Skip to main content

The Precambrian Mafic Magmatic Record, Including Large Igneous Provinces of the Kalahari Craton and Its Constituents: A Paleogeographic Review

  • Chapter
  • First Online:

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The study of Precambrian dyke swarms, sill provinces and large igneous provinces on the Kalahari craton in southern Africa has expanded greatly since the pioneering work initiated almost four decades ago. The main contributors to this progress have been a large number of precise U–Pb crystallization ages of mafic rocks, published in a number of recent papers. This information is compiled here into a series of maps that provide a nearly 3 billion year intraplate magmatic record of the Kalahari craton and its earlier constituents, the proto-Kalahari, Kaapvaal and Zimbabwe cratons. We also review their possible paleogeographic relations to other cratons or supercontinents. This review provides a more accessible overview of individual magmatic events, and mostly includes precise U–Pb ages of mafic dykes and sills, some of which can be linked to stratigraphically well-constrained volcanic rocks. The extrusion ages of these volcanic units are also starting to be refined by, among others, in situ dating of baddeleyite. Some mafic dyke swarms, previously characterized entirely on similarity in dyke trends within a swarm, are found to be temporally composite and sometimes consist of up to three different generations. Other mafic dyke swarms, with different trends, can now be linked to protracted volcanic events like the stratigraphically well preserved Mesoarchean Nsuze Group (Pongola Supergroup) and Neoarchean Ventersdorp Supergroup. Following upon these Archean events, shorter-lived Proterozoic large igneous provinces also intrude the Transvaal Supergroup, Olifantshoek Supergroup and Umkondo Group, and include the world’s largest layered intrusion, the Bushveld Complex. Longer-lived late Paleoproterozoic magmatic events are also preserved as mafic intrusions and lava units within the Waterberg and Soutpansberg groups as well as the granitic basement. Many gaps in our knowledge of the Precambrian mafic record of the Kalahari craton remain, but further multi-disciplinary studies combining the latest advances in U–Pb geochronology and both paleomagnetism and geochemistry will help solve the Precambrian paleogeographic puzzle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alebouyeh Semami F, De Kock MO, Söderlund U, Gumsley AP, Da Silva R, Beukes NJ, Armstrong RA (2016) New U–Pb geochronologic and palaeomagnetic constraints on the late Palaeoproterozoic Hartley magmatic event: evidence for a potential large igneous province in the Kaapvaal Craton during Kalahari assembly, South Africa. GFF https://doi.org/10.1080/11035897.2015.1124917

    Article  Google Scholar 

  • Allsopp HL, Smith CB, Seggie AG, Skinner EMW, Colgan EA (1995) The emplacement age and geochemical character of the Venetia kimberlite bodies, Limpopo Belt, northern Transvaal. S Afr J Geol 98(3):239–244

    Google Scholar 

  • Altermann W, Lenhardt N (2012) The volcano-sedimentary succession of the Archean Sodium Group, Ventersdorp Supergroup, South Africa: volcanology, sedimentology and geochemistry. Precambrian Res 214–215:60–81. https://doi.org/10.1016/j.precamres.2012.02.012

    Article  Google Scholar 

  • Antonio PYJ, D’Agrella-Filho MS, Trindade RIF, Nédélec A, de Oliveira DC, da Silva FF, Roverato M, Lana C (2017) Turmoil before the boring billion: paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian craton. Gondwana Res 49:106–129. https://doi.org/10.1016/j.gr.2017.05.006

    Article  Google Scholar 

  • Armstrong RA, Compston W, Retief EA, Williams IS, Welke HJ (1991) Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Res 53:243–266

    Article  Google Scholar 

  • Armstrong RA, Wilson AH (2000) A SHRIMP U-Pb study of zircons from the layered sequence of the Great Dyke, Zimbabwe, and a granitoid anatectic dyke. Earth Planet Sci Lett 180(1–2):1–12

    Article  Google Scholar 

  • Bailie R, Gutzmer J, Rajesh HM, Armstrong RA (2011) Age of ferroan A-type post-tectonic granitoids of the southern part of the Keimoes Suite, Northern Cape Province, South Africa. J Afr Earth Sci 60:153–174

    Article  Google Scholar 

  • Barnes S-J, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: Implications for the formation of the Platinum-group element deposits. Econ Geol 105:1491–1511

    Article  Google Scholar 

  • Bartholomew LT (2008) Paleomagnetism of neoproterozoic intraplate igneous rocks in the southwest Kalahari craton, Namibia and South Africa. Unpublished MSc thesis, Texas Christian University, USA

    Google Scholar 

  • Barton JM (1979) The chemical compositions, Rb-Sr isotopic systematics and tectonic setting of certain post-kinematic mafic igneous rocks, Limpopo Mobile Belt, southern Africa. Precambrian Res 9:57–80

    Article  Google Scholar 

  • Barton JMJ, Blignaut E, Salnikova EB, Kotov AB (1995) The stratigraphical position of the Buffelsfontein Group based on field relationships and chemical and geochronological data. S Afr J Geol 98:386–392

    Google Scholar 

  • Barton JMJ, Barton ES, Smith CB (1996) Petrography, age and origin of the Schiel alkaline complex, northern Transvaal, South Africa. J Afr Earth Sci 22(2):133–145

    Article  Google Scholar 

  • Becker T, Schreiber U, Kampunzu AB, Armstrong RA (2006) Mesoproterozoic rocks of Namibia and their plate tectonic setting. J Afr Earth Sci 46:112–140

    Article  Google Scholar 

  • Belica ME, Piispa EJ, Meert JG, Pesonen LJ, Plado J, Pandit MK, Kamenov GD, Celestino M (2014) Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88 Ga and rethinking the Columbia supercontinent. Precambrian Res 244:100–122

    Article  Google Scholar 

  • Beukes NJ, Cairncross B (1991) A lithostratigraphic-sedimentological reference profile for the Late Archean Mozaan Group, Pongola Sequence: application to sequence stratigraphy and correlation with the Witwatersrand Supergroup. S Afr J Geol 94(1):44–69

    Google Scholar 

  • Blake DH, Tyler IM, Griffin TJ, Sheppard S, Thorne AM, Warren RG (1999) Geology of the Halls Creek 1:100,000 Sheet area (4461), Western Australia. Australian Geological Survey, Canberra

    Google Scholar 

  • Bleeker W, Ernst RE (2006) Short-lived mantle generated magmatic events and theri dike swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dike swarms: time markers of crustal evolution. Taylor & Francis/Balkema, Leiden, pp 3–26

    Google Scholar 

  • Bleeker W, Chamberlain K, Kamo SL, Hamilton M, Kilian TM, Buchan KL (2016) Kaapvaal, Superior and Wyoming: nearest neighbours in supercraton Superia. Paper presented at the 35th international geological congress, Cape Town, South Africa

    Google Scholar 

  • Borg G, Kärner K, Buxton M, Armstrong RA, Van der Merwe SW (2003) Geology of the Skorpion supergene zinc deposit, Southern Namibia. Econ Geol 98:749–771

    Article  Google Scholar 

  • Briden JC, Duff BA, Kröner A (1979) Palaeomagnetism of the Koras Group, Northern Cape province, South Africa. Precambrian Res 10:43–57

    Article  Google Scholar 

  • Buchan KL, Ernst RE, Bleeker W, Davies W, Villeneauve M, Van Breemen O, Hamilton M, Söderlund U (2010) Proterozoic magmatic events of the Slave craton, Wopmay orogen and environs. In: Geological Survey of Canada, Open File 5985. Geological Survey of Canada

    Google Scholar 

  • Burke K, Kidd WSF, Kusky TM (1985) The Pongola structure of southeastern Africa: the world’s oldest preserved rift? J Geodyn 2:35–49

    Article  Google Scholar 

  • Cawthorn RG, Davies G, Clubley-Armstrong A, McCarthy TS (1981) Sills associated with the Bushveld Complex, South Africa: an estimate of the parental magma composition. Lithos 14:1–16

    Article  Google Scholar 

  • Cawthorn RG, Eales HV, Walraven F, Uken R, Watkeys MK (2006) The bushveld complex. In: Johnston MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. The Geological Society of South Africa and Council for Geosciences, Pretoria, South Africa, pp 261–281

    Google Scholar 

  • Cheney ES (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Res 79:3–24

    Article  Google Scholar 

  • Ciborowski T, Minifie M, Kerr AC, Baragar B, Millar IL (2017) A mantle plume origin for the Palaeoproterozoic Circum Superior Large Igneous Province. Precambrian Res 294:189–213

    Article  Google Scholar 

  • Clarke B, Uken R, Reinhardt J (2009) Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos 111:21–36. https://doi.org/10.1016/j.lithos.2008.11.006

    Article  Google Scholar 

  • Clifford TN (1970) The structural framework of Africa. In: Clifford TN, Gass IG (eds) African magmatism and tectonics. Oliver and Boyd, Edinburgh, pp 1–26

    Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36

    Article  Google Scholar 

  • Coffin MF, Eldholm O (2001) Large igneous provinces: progenitors of some ophiolites? In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Special Paper, vol 352. Geological Society of America, Boulder, CO, pp 59–70

    Chapter  Google Scholar 

  • Cole EG (1994) Lithostratigraphy and depositional environment of the Archaean Nsuze Group, Pongola Supergroup. Unpublished PhD thesis, Rand Afrikaans University, Johannesburg, South Africa

    Google Scholar 

  • Cole J, Webb SJ, Finn CA (2014) Gravity models of the Bushveld Complex—have we come full circle? J Afr Earth Sci 92:97–118

    Article  Google Scholar 

  • Cornell DH, Schutte SS, Eglington BL (1996) The Ongeluk basaltic andesite formation in Griqualand West, South-Africa: submarine alteration in a 2222 Ma Proterozoic sea. Precambrian Res 79:101–123

    Article  Google Scholar 

  • Cornell DH, Armstrong RA, Walraven F (1998) Geochronology of the Proterozoic Hartley Basalt Formation, South Africa: constraints on the Kheis tectogenesis and the Kaapvaal Craton’s earliest Wilson Cycle. J Afr Earth Sci 26(1):5–27

    Article  Google Scholar 

  • Cornell DH, Van Schjindel V, Simonsen SL, Frei D (2015) Geochronology of Mesoproterozoic hybrid intrusions in the Konkiep Terrane, Namibia, from passive to active continental margin in the Namaqua-Natal Wilson Cycle. Precambrian Res 265:166–188

    Article  Google Scholar 

  • Cornell DH, Zack T, Anderson T, Corfu F, Frei D, Van Schjindel V (2016) Restricted access Th-U-Pb zircon geochronology of the Palaeoproterozoic Hartley Formation porphyry by six methods, with age uncertainty approaching 1 Ma. S Afr J Geol 119:473–494. https://doi.org/10.2113/gssajg.119.3.473

    Article  Google Scholar 

  • Cornell DH, Meintjies PG, Van der Westerhuizen WA, Frei D (2018) Microbeam U-Pb zircon dating of the Makwassie and Goedgenoeg formations in the Ventersdorp Supergroup of South Africa. S Afr J Geol 120(4):525-540

    Google Scholar 

  • Corner B, Verran DR, Hildebrand PR (2012) Geophysical interpretation of the nature and extent of the Xade Mafic Complex, Botswana. S Afr J Geol 115(4):485–498

    Article  Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol Soc Am Bull 109:16–42

    Article  Google Scholar 

  • De Kock MO, Evans DAD, Dorland HC, Beukes NJ, Gutzmer J (2006) Paleomagnetism of the lower two unconformity-bounded sequences of the Waterberg Group, South Africa: towards a better-defined apparent polar wander path for the Paleoproterozoic Kaapvaal Craton. S Afr J Geol 109(1):157–182

    Article  Google Scholar 

  • De Kock MO, Evans DAD, Beukes NJ (2009) Validating the existence of Vaalbara in the late Neoarchean. Precambrian Res 174:145–154

    Article  Google Scholar 

  • De Kock MO, Beukes NJ, Armstrong RA (2012) New SHRIMP U-Pb zircon ages from the Hartswater Group, South Africa: implications for correlations of the Neoarchean Ventersdorp Supergroup on the Kaapvaal craton and with the Fortesque Group on the Pilbara craton. Precambrian Res 204–205:66–74

    Article  Google Scholar 

  • De Kock MO, Ernst RE, Söderlund U, Jourdan F, Hofmann A, Le Gall B, Bertrand H, Chisonga BC, Beukes NJ, Rajesh HM, Moseki LM, Fuchs R (2014) Dykes of the 1.11 Ga Umkondo LIP, Southern Africa: clues to a complex plumbing system. Precambrian Res 249:129–143. https://doi.org/10.1016/j.precamres.2014.05.006

    Article  Google Scholar 

  • De Kock MO, Ravhura L, Vorster C, Beukes NJ, Gumsley AP (2016) Constraining the timing of the Molopo Farms Complex emplacement and provenance of its country rock. Acta Geol Sin 90:78. https://doi.org/10.1111/1755-6724.12898

    Article  Google Scholar 

  • De Waal SA, Armstrong RA (2000) The age of the Marble Hall diorite, its relationship to the UItkomst Complex, and evidence for a new magma type associated with the Bushveld igneous event. S Afr J Geol 103(2):128–140

    Article  Google Scholar 

  • De Waal SA, Graham IT, Armstrong RA (2006) The Lindeques Drift and Heidelberg intrusions and the Roodekraal Complex, Vredefort, South Africa: comagmatic plutonic and volcanic products of a 2055 Ma ferrobasaltic magma. S Afr J Geol 109:270–300

    Google Scholar 

  • De Waal SA, Schweitzer JK, Graham I, Gauert CDK, Ripley E (2008) A Bushveld-related high-Ti igneous suite (HITIS) derived from an alkali to transitional basaltic magma, South Africa. S Afr J Geol 111:201–224

    Article  Google Scholar 

  • De Wit MJ, Roering C, Hart RJ, Armstrong RA, De Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Article  Google Scholar 

  • Denyszyn SW, Feinberg JM, Renne PR, Scott GR (2013) Revisiting the age and paleomagnetism of the Modipe Gabbro of South Africa. Precambrian Res 238:176–185. https://doi.org/10.1016/j.precamres.2013.10.002

    Article  Google Scholar 

  • Donnelly CL, Griffin WL, O’Reilly SY, Pearson A, Shee SR (2011) The kimberlites and related rocks of the Kuruman kimberlite province, Kaapvaal craton, South Africa. Contrib Mineral Petrol 161:351–371

    Article  Google Scholar 

  • Donnelly CL, Griffin WL, Yang J-H, O’Reilly SY, Li Q-L, Pearson NJ, Li X-H (2012) In situ U-Pb dating and Sr-Nd isotopic analysis of Perovskite: constraints on the age and petrogenesis of the Kuruman kimberlite province, Kaapvaal craton, South Africa. J Petrol 53(12):2497–2522

    Article  Google Scholar 

  • Dorland HC, Beukes NJ, Gutzmer J, Evans DAD, Armstrong RA (2006) Precise SHRIMP U-Pb zircon age constraints on the lower Waterberg and Soutpansberg Groups, South Africa. S Afr J Geol 109(1):139–156

    Article  Google Scholar 

  • Eglington BM, Armstrong RA (2004) The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. S Afr J Geol 107:13–32

    Article  Google Scholar 

  • Elburg M, Cawthorn RG (2017) Source and evolution of the alkaline Pilanesberg Complex, South Africa. Chem Geol 455:148–165. https://doi.org/10.1016/j.chemgeo.2016.10.007

    Article  Google Scholar 

  • Emerman SH (1991) Correlation of a dyke swarm in southeastern Botswana with the Pilanesberg dyke swarm, South Africa. J Afr Earth Sci 12(4):525–531

    Article  Google Scholar 

  • Eriksson PG, Engelbrecht JP, Res M, Harmer RE (1994) The Bushy Bend lavas, a new volcanic member of the Pretoria Group, Transvaal Sequence. S Afr J Geol 97:1–7

    Google Scholar 

  • Eriksson PG, Altermann W, Hartzer FJ (2006) The Transvaal Supergroup. In: Johnson MR, Anhaeusser C, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa/Council for Geoscience, Johannesburg/Pretoria, pp 237–260

    Google Scholar 

  • Erlank AJ (1984) Petrogenesis of the volcanic rocks of the Karoo Province (Special Publication No 13). Geological Society of South Africa, South Africa

    Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge, United Kingdom

    Book  Google Scholar 

  • Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can J Earth Sci 47:695–739

    Article  Google Scholar 

  • Ernst RE, Head JW, Parfitt E, Grosfils EB, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58

    Article  Google Scholar 

  • Ernst RE, Pereira E, Hamilton MA, Pisarevsky SA, Rodriques J, Tassinari CCG, Teixeira W, Van-Dunem V (2013) Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo craton: newly dated magmatic events at 1500 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res 230:103–118

    Article  Google Scholar 

  • Evans DAD (2009) The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues, vol 327. Geological society. London, Special Publications, pp 371–404

    Google Scholar 

  • Evans DA (2013) Reconstructing pre-Pangean supercontinents. Geol Soc Am Bull 125(11–12):1735–1751

    Article  Google Scholar 

  • Evans DA, Beukes NJ, Kirschvink JL (1997) Low-latitude glaciation in the Palaeoproterozoic era. Nature 386:262–266

    Article  Google Scholar 

  • Evans DAD, Smirnov AV, Gumsley AP (2017) Paleomagnetism and U-Pb geochronology of the Black Range dykes, Pilbara Craton, Western Australia: a Neoarchean crossing of the polar circle. Aust J Earth Sci . https://doi.org/10.1080/08120099.2017.1289981

    Article  Google Scholar 

  • French JE, Heaman LM (2010) Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Res 183(3):416–441

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res 160(3–4):308–322. https://doi.org/10.1016/j.precamres.2007.08.005

    Article  Google Scholar 

  • Friese AEW, Charlesworth EG, McCarthy TS (1995) Tectonic processes within the Kaapvaal Craton during the Kimbaran (Grenville) orogeny: structural, geophyscial and isotopic constraints from the Witwatersrand Basin and environs, vol 292. Economic geology research unit information circular. University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Frimmel HE, Klötzli US, Siegfired PR (1996) New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. J Geol 104(4):459–469

    Article  Google Scholar 

  • Frimmel HE, Zartman RE, Späth A (2001) The Richtersveld Igneous Complex, South Africa: U-Pb zircon and geochemical evidence for the beginning of Neoproterozoic continental breakup. J Geol 109:493–508

    Article  Google Scholar 

  • Geng H, Brandl G, Sun M, Wong J, Kröner A (2014) Zircon ages defining deposition of the Palaeoproterozoic Soutpansberg Group and further evidence for Eoarchaean crust in South Africa. Precambrian Res 249:247–262. https://doi.org/10.1016/j.precamres.2014.05.020

    Article  Google Scholar 

  • Gold DJC (2006) The Pongola Supergroup. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) Geology of South Africa. Geological Society of South Africa/Council for Geoscience, Johannesburg/Pretoria, pp 135–147

    Google Scholar 

  • Goldberg AS (2010) Dyke swarms as indicators of major extensional events in the 1.9–1.2 Ga Columbia supercontinent. J Geodyn 50:176–190

    Article  Google Scholar 

  • Gose GA, Hanson RE, Dalziel IWD, Pancake JA, Seidel EK (2006) Paleomagnetism of the 1.1 Ga Umkondo large igneous province in southern Africa. J Geophys Res 111:1–18

    Article  Google Scholar 

  • Gose WA, Hanson RE, Harmer RE, Seidel EK (2013) Reconnaissance paleomagnetic studies of Mesoproterozoic alkaline igneous complexes in the Kaapvaal craton, South Africa. J Afr Earth Sci 85:22–30. https://doi.org/10.1016/j.jafrearsci.2013.04.005

    Article  Google Scholar 

  • Gough DL, Hales AL (1956) A paleomagnetic study of the palaeomagnetism of the Pilanesberg dykes. Mon Not R Astron Soc Geophys Suppl 7:196–213

    Article  Google Scholar 

  • Griffin WL, Batumike JM, Greau Y, Pearson NJ, Shee SR, O’Reilly SY (2014) Emplacement ages and sources of kimberlites and related rocks in southern Africa: U-Pb ages and Sr-Nd isotopes of groundmass perovskite. Contrib Mineral Petrol 168:1032

    Article  Google Scholar 

  • Grobler DF, Walraven F (1993) Geochronology of Gabarone Granite Complex extensions in the area north of Mafikeng, South Africa. Chem Geol 105:319–337

    Article  Google Scholar 

  • Groenewald PB, Grantham GH, Watkeys MK (1991) Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Donning Maud Land, Antarctica. J Geol Soc London 148:1115–1123

    Article  Google Scholar 

  • Gumsley AP, de Kock MO, Rajesh HM, Knoper MW, Söderlund U, Ernst RE (2013) The Hlagothi Complex: the identification of fragments from a Mesoarchean large igneous province on the Kaapvaal Craton. Lithos 174:333–348. https://doi.org/10.1016/j.lithos.2012.06.007

    Article  Google Scholar 

  • Gumsley AP, Olsson JR, Söderlund U, De Kock MO, Hofmann A, Klausen M (2015) Precise U-Pb baddeleyite age dating of the Ushushwana Complex, southern Africa—implications for the Mesoarchaean magmatic and sedimentological evolution of the Pongola Supergroup, Kaapvaal Craton. Precambrian Res 257:174–185. https://doi.org/10.1016/j.precamres.2015.06.010

    Article  Google Scholar 

  • Gumsley AP, Rådman J, Söderlund U, Klausen M (2016) U-Pb baddeleyite geochronology and geochemistry of the White Mfolozi Dyke Swarm: unravelling the complexities of 2.70–2.66 Ga dyke swarms across the eastern Kaapvaal Craton, South Africa. GFF 138(1):115–132

    Article  Google Scholar 

  • Gumsley AP, Chamberlain KR, Bleeker W, Söderlund U, De Kock MO, Larsson ER, Bekker A (2017) Timing and tempo of the Great Oxidation Evenet. Proc Natl Acad Sci USA 114:1811–1816. https://doi.org/10.1073/pnas.1608824114

    Article  Google Scholar 

  • Gutzmer J, Beukes NJ, Pickard A, Barley ME (2000) 1170 Ma SHRIMP age for Koras Group bimodal volcanism, Northern Cape Province. S Afr J Geol 103:32–37

    Article  Google Scholar 

  • Hamilton MA, Sadowski GR, Teixeira W, Ernst RE, Ruiz AS (2012) Precise, matching U-Pb ages for the Rincon del Tigre mafic layered intrusion and Huanchaca gabbro sill, Bolivia: evidence for a late Mesoproterozoic LIP in SW Amazonia? In: Geoscience at the Edge, GAC-MAC Joint Annual Meeting, St. John’s

    Google Scholar 

  • Hammerbeck ECI, Allcock RJ (1985) 1:4,000,000 Geological map of Southern Africa. The Geological Society of South Africa, Pretoria, South Africa

    Google Scholar 

  • Hanson RE (2003) Proterozoic geochronology and tectonic evolution of southern Africa. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: Supercontinent assembly and breakup, vol 1. Geological society special publication no 206. The Geological Society, London, pp 427–463

    Article  Google Scholar 

  • Hanson RE (Pers. comm.) TIMS ages for main felsic igneous rocks associated with the Gannakouriep dykes

    Google Scholar 

  • Hanson RE, Martin MW, Bowring SA, Munyanyiwa H (1998) U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa-East Antarctica and possible Rodinia correlations. Geology 26(12):1143–1146

    Article  Google Scholar 

  • Hanson RE, Crowley JL, Bowring SA, Ramazani J, Gose WU, Dalziel IWD, Pancake JA, Seidel EK, Blenkinsop TG, Mukwakwami J (2004a) Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science 304:1126–1129

    Article  Google Scholar 

  • Hanson RE, Gose WA, Crowley JL, Ramezani J, Bowring SA, Bullen DS, Hall RP, Pancake JA, Mukwakwami J (2004b) Paleoproterozoic intraplate magmatism and basin development on the Kaapvaal Craton: Age, paleomagnetism and geochemistry of ~1.93 to ~1.87 Ga post-Waterberg dolerites. S Afr J Geol 107:233–254

    Article  Google Scholar 

  • Hanson RE, Harmer RE, Blenkinsop TG, Bullen DS, Dalziel IWD, Gose WA, Hall RP, Kampunzu AB, Key RM, Mukwakwami J, Munyanyiwa H, Pancake JA, Seidel EK, Ward SE (2006) Mesoproterozoic intraplate magmatism in the Kalahari Craton: A review. J Afr Earth Sci 46:141–167

    Article  Google Scholar 

  • Hanson RE, Rioux M, Bowring SA, Gose GA, Bartholomew LT, Kilian TM, Evans DA, Panzik JE, Hoffmann KH, Reid DL (2011a) Constraints on Neoproterozoic intraplate magmatism in the Kalahari craton: geochronology and paleomagnetism of ~890–795 Ma extension-related igneous rocks in SW Namibia and adjacent parts of South Africa. In: Geological Society of America Abstracts with Programs, vol 5, p 371

    Google Scholar 

  • Hanson RE, Rioux M, Gose WA, Blackburn TJ, Bowring SA, Mukwakwami J, Jones DL (2011b) Paleomagnetic and geochronological evidence for large-scale post 1.88 Ga displacement between the Zimbabwe and Kaapvaal cratons along the Limpopo belt. Geology 39(5):487–490

    Article  Google Scholar 

  • Hargraves RB (1989) Paleomagnetism of Mesozoic kimberlites in southern Africa and the Cretaceous apparent polar wander curve for Africa. J Geophys Res 94(B2):1851–1866

    Article  Google Scholar 

  • Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. J Petrol 40:525–548

    Article  Google Scholar 

  • Hart R, Moser D, Andreoli M (1999) Archean age for the granulite facies metamorphism near the center of the Vredefort structure, South Africa. Geology 27(12):1091–1094

    Article  Google Scholar 

  • Hartnady CJH, Joubert P, Stowe C (1985) Proterozoic crustal evolution in southwestern Africa. Episodes 8:236–244

    Google Scholar 

  • Hatton CJ (1995) Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces. J Afr Earth Sci 21(4):571–577

    Article  Google Scholar 

  • Heaman LM, LeCheminant AN (1993) Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126

    Article  Google Scholar 

  • Heaman LM (2009) The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks. An evaluation of three mineral standards. Chem Geol 261(1–2):43–52

    Article  Google Scholar 

  • Hegner E, Kröner A, Hunt P (1994) A precise U-Pb zircon age for the Archaean Pongola Supergroup volcanics in Swaziland. J Afr Earth Sci 18:339–341. https://doi.org/10.1016/0899-5362(94)90072-8

    Article  Google Scholar 

  • Henderson DR, Long LE, Barton JM Jr (2000) Isotopic ages and chemical and isotopic composition of the Archaean Turfloop Batholith, Pieterburg granite-greenstone terrane, Kaapvaal Craton, South Africa. S Afr J Geol 103(38):46

    Google Scholar 

  • Hofmann A, Kröner A, Hegner E, Belyanin GA, Kramers JD, Bolhar R, Slabunov A, Reinhardt J, Horváth P (2015) The Nhlangano gneiss dome in south-west Swaziland—a record of crustal destabilization of the eastern Kaapvaal craton in the Neoarchaean. Precambrian Res 258:109–132. https://doi.org/10.1016/j.precamres.2014.12.008

    Article  Google Scholar 

  • Holzer L, Frei R, Barton JM Jr, Kramers JD (1998) Unraveling the record of successive high grade events in the Central Zone of the Limpopo Belt using Pb single phase dating of metamorphic minerals. Precambrian Res 87:87–115

    Article  Google Scholar 

  • Horn I, Rudnick RL, McDonough WF (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser-ablation-ICP-M.S.: application to U-Pb geochronology. Chem Geol 167:405–425

    Google Scholar 

  • Humbert F, Sonnette L, De Kock MO, Robion P, Horng CS, Cousture A, Wabo H (2017) Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa. Geophys J Int 209:842–865. https://doi.org/10.1093/gji/ggx055

    Article  Google Scholar 

  • Hunt JP, Hatton C, De Kock MO, Bleeker W (2017) Plume activity related to the Kaapvaal craton and implications for Rhyacian plate reconstructions and ore deposits. Paper presented at the SGA Quebec 2017, Quebec City, Canada, 20–23 Aug 2017

    Google Scholar 

  • Hunter DR, Reid DL (1987) Mafic Dyke Swarms in Southern Africa. In: Halls HC, Fahring WF (eds) Mafic Dyke Swarms. Geological Association of Canada, pp 445–456

    Google Scholar 

  • Jacobs J, Pisarevsky S, Thomas RJ, Becker T (2008) The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Res 160:142–158

    Article  Google Scholar 

  • Jelsma HA, de Wit MJ, Thiart C, Dirks PHGM, Viola G, Basson IJ, Anckar E (2004) Preferential distribution along transcontinental corridors of kimberlites and related rocks of Southern Africa. S Afr J Geol 107:301–324

    Article  Google Scholar 

  • Johnson SP, Rivers T, De Waele B (2005) A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south-central Africa: implications for Rodinia and Gondwana. J Geol Soc 162(3):433–450

    Article  Google Scholar 

  • Johnson SP, De Waele B, Evans DM, Banda W, Tembo F, Milton JA, Tani K (2007) Geochronology of the Zambezi Supracrustal Sequence, southern Zambia: A record of Neoproterozoic divergent processes along the southern margin of the Congo Craton. J Geol 115:355–374

    Article  Google Scholar 

  • Jones DL, McElhinny MW (1966) Paleomagnetic correlation of basic intrusions in the Precambrian of southern Africa. J Geophys Res 71:543–552

    Article  Google Scholar 

  • Jones DL, Robertson IDM, McFadden PL (1974) A paleomagnetic study of the Precambrian dyke swarms associated with the great Dyke of Rhodesia. Trans Geol Soc S Afr 78:57–65

    Google Scholar 

  • Jones DL, Bates MP, Li ZX, Corner B, Hodgkinson G (2003) Palaeomagnetic results from the ca. 1130 Ma Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, Antarctica, and tectonic implications. Tectonophysics 375:247–260

    Article  Google Scholar 

  • Jourdan F, Féraud G, Bertrand H, Kampunzu AB, Tshoso G, Le Gall B, Tiercelin JJ, Capiez P (2004) The Karoo triple junction questioned: evidence from Jurassic and Proterozoic 40Ar/39Ar ages and geochemistry of giant Okovango dyke swarm (Botswana). Earth Planet Sci Lett 222:989–1006

    Article  Google Scholar 

  • Jourdan F, Féraud G, Bertrand H, Watkeys MK, Kampunzu AB, Le Gall B (2006) Basement control on dyke distribution in Large Igneous Provinces: case study of the Karoo triple junction. Earth Planet Sci Lett 241:307–322

    Article  Google Scholar 

  • Kampmann TC, Gumsley AP, De Kock MO, Söderlund U (2015) U-Pb geochronology and paleomagnetism of the Westerberg Sill Suite, Kaapvaal Craton - Support for a coherent Kaapvaal-Pilbara Block (Vaalbara) into the Paleoproterozoic? Precambrian Res 269:58–72

    Article  Google Scholar 

  • Kasbohm JJ, Evans DAD, Panzik JE, Hofmann M, Linnemann U (2016) Paleomagnetic and geochronologic data from late Mesoproterozoic red bed sedimentary rocks on the western margin of Kalahari craton. In: Li ZX, Evans DAD, Murphy JB (eds) Supercontinent cycles through earth history. Geological Society of London Special Publication, 424. Geological Society of London, London, pp 145–165

    Article  Google Scholar 

  • Katongo C, Koller F, Kloetzli U, Koeberl C, Tembo F, De Waele B (2004) Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian-Zambezi belt, Zambia: Implications for tectonic setting and regional correlation. J Afr Earth Sci 40(5):219–244

    Article  Google Scholar 

  • Key R, Mapeo R (1999) The Mesoproterozoic history of Botswana and the relationship of the NW Bostwana Rift to Rodinia. Episodes 22(2):118–122

    Google Scholar 

  • Kilian TM, Chamberlain K, Evans DAD, Bleeker W, Cousens BL (2016) Wyoming on the run—towards final Paleoproterozoic assembly of Laurentia. Geology 44(10):863–866. https://doi.org/10.1130/G38042.1

    Article  Google Scholar 

  • Klausen MB, Söderlund U, Olsson JR, Ernst RE, Armoogam M, Mkhize SW, Petzer G (2010) Petrological discrimination among Precambrian dyke swarms: Eastern Kaapvaal craton (South Africa). Precambrian Res 183(3):501–522. https://doi.org/10.1016/j.precamres.2010.01.013

    Article  Google Scholar 

  • Knoper MW, Ernst RE, Kamo SL, Bleeker W, Söderlund U (2014) Three LIPs on two and half cratons. In: 2014 GSA Annual Meeting, Vancouver, Canada, 19–22 Oct 2014

    Google Scholar 

  • Kramers JD, Mouri H (2011) The geochronology of the Limpopo Complex: a controversy solved. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of precambrian high-grade Gneiss Terranes, with special emphasis on the Limpopo Complex of South Africa: geological society of America Memoir 207. The Geological Society of America, pp 85–106

    Google Scholar 

  • Kramers JD, McCourt S, Roering C, Smit CA, Van Reenen DD (2011) Tectonic models proposed for the Limpopo Complex: mutual compatibilities and constraints. Geol Soc Am Mem 207:311–324

    Google Scholar 

  • Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37(3):485–494

    Article  Google Scholar 

  • Krynauw JR, Watters BR, Hunter DR, Wilson AH (1991) A review of the field relationships, petrology and geochemistry of the Borgmassivet intrusions in the Grunehogna province, western Dronnig Maud Land, Antarctica. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, UK, pp 33–39

    Google Scholar 

  • Kumar A, Parashuramulu V, Shankar R, Besse J (2017) Evidence for a Nearchean LIP in the Singhbhum craton, eastern India: implications to Vaalbara supercontinent. Precambrian Res 292:163–174. https://doi.org/10.1016/j.precamres.2017.01.018

    Article  Google Scholar 

  • Larsson ER (2015) U-Pb baddeleyite dating of intrusions in the south-easternmost Kaapvaal Craton (South Africa): revealing multiple events of dyke emplacement. MSc Thesis, Lund University, Lund, Sweden

    Google Scholar 

  • Laurent O, Zeh A (2015) A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: example from the Pietersburg block (South Africa). Earth Planet Sci Lett 430:326–338. https://doi.org/10.1016/j.epsl.2015.08.082

    Article  Google Scholar 

  • Laurent O, Paquette J-L, Martin H, Doucelance R, Moyen J-F (2013) LA-ICP-MS dating of zircons from Meso- and Neoarchean granitoids of the Pieterburg block (South Africa): crustal evolution at the northern margin of the Kaapvaal craton. Precambrian Res 230:209–226. https://doi.org/10.1016/j.precamres.2013.02.009

    Article  Google Scholar 

  • Layer PW, Kröner A, McWilliams M, Burghele A (1988) Paleomagnetism and age of the Archean Usushwana Complex, Southern Africa. J Geophys Res 93(B1):449–457

    Article  Google Scholar 

  • Layer PW, Kröner A, McWilliams M, York D (1989) Elements of the Archean thermal history and apparent polar wander of the eastern Kaapvaal craton, Swaziland, from single grain dating and paleomagnetism. Earth Planet Sci Lett 93:23–24

    Article  Google Scholar 

  • Letts S, Torsvik TH, Webb SJ, Ashwal LD, Eide EA, Chunnett G (2005) Palaeomagnetism and 40Ar/39Ar geochronology of mafic dykes from the eastern Bushveld Complex (South Africa). Geophys J Int 162:36–48

    Article  Google Scholar 

  • Letts S, Torsvik TH, Webb SJ, Ashwal LD (2009) Palaeomagnetism of the 2054 Ma Bushveld Complex (South Africa): implications for emplacement and cooling. Geophys J Int 179:850–872. https://doi.org/10.1111/j.1365-246X.2009.04346.x

    Article  Google Scholar 

  • Letts S, Torsvik TH, Webb SJ, Ashwal LD (2010) New Palaeoproterozoic palaeomagnetic data from the Kaapvaal Craton, South Africa. Geol Soc Lond Spec Publ 357:9–26

    Article  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  Google Scholar 

  • Lister JR, Kerr RC (1991) Fluidmechanical models of crack propagation and their application to magma transport in dikes. J Geophys Res 96(B6):10049–10077

    Article  Google Scholar 

  • Lubnina N, Ernst RE, Klausen M, Söderlund U (2010) Paleomagnetic study of Neoarchean-Paleoproterozoic dykes in the Kaapvaal Craton. Precambrian Res 183:523–552. https://doi.org/10.1016/j.precamres.2010.05.005

    Article  Google Scholar 

  • MacDonnald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP (2010) Calibrating the cryogenian. Science 327:1241–1243

    Article  Google Scholar 

  • Maier WD, Peltonen P, Grantham G, Mänttäri I (2003) A new 1.9 Ga age for the Trompsburg intrusion, South Africa. Earth Planet Sci Lett 212:351–360. https://doi.org/10.1016/S0012-821X(03)00281-4

    Article  Google Scholar 

  • Maier WD, Prevec SA, Scoates JS, Wall CJ, Barnes S-J, Gomwe T (2017) The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology. Miner Depos 1–22. https://doi.org/10.1007/s00126-017-0716-x

    Article  Google Scholar 

  • Majaule T, Hanson RE, Key R, Singletary SJ, Martin MW, Bowring SA (2001) The Magondi Belt in northeast Botswana: regional relations and new geochronological data from the Sua Pan area. J Afr Earth Sci 32(2):257–267

    Article  Google Scholar 

  • Manyeruke TD, Blenkinsop TG, Buchholz P, Love D, Oberthür T, Vetter UK, Davis DW (2004) The age and petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: first evidence for early Paleoproterozoic magmatism in Zimbabwe. J Afr Earth Sc 40(5):281–292

    Article  Google Scholar 

  • Mapeo RBM, Armstrong RA, Kampunzu AB, Ramokate LV (2004a) SHRIMP U-Pb zircon ages of granitoids from the Western Domain of the Kaapvaal Craton, Southeastern Botswana: implications for crustal evolution. S Afr J Geol 107:159–172

    Article  Google Scholar 

  • Mapeo RBM, Kampunzu AB, Ramokate LV, Corfu F, Key RM (2004b) Bushveld-age magmatism in southeastern Botswana: evidence from U-Pb zircon and titanite geochronology of the Moshaneng Complex. S Afr J Geol 107:219–232

    Article  Google Scholar 

  • Maré LP, Fourie CJS (2012) New geochemical and palaeomagnetic results from Neoarchaean dyke swarms in the Badplaas-Barberton area, South Africa. S Afr J Geol 115(2):145–170

    Article  Google Scholar 

  • Marsh JS, Bowen MP, Rogers NW, Bowen TB (1989) Volcanic rocks of the Witwatersrand Triad, South Africa. II: Petrogenesis of mafic and felsic rocks of the Dominion Group. Precambrian Res 44:39–65. https://doi.org/10.1016/0301-9268(89)90075-2

    Article  Google Scholar 

  • Master S (1991) Stratigraphy, tectonic setting and mineralization of the Early Proterozoic Magondi Supergroup, Zimbabwe: a review, vol 238. Economic geology research institute information circular. University of the Witwatersrand, Johannesburg, South Africa

    Google Scholar 

  • McCarthy TS, McCallum K, Myers RE, Linton P (1990) Stress states along the northern margin of the Witwatersrand Basin during Klipriviersberg Group volcanism. S Afr J Geol 93:245–260

    Google Scholar 

  • McCourt S, Hilliard P, Armstrong RA, Munyanyiwa H (2001) SHRIMP U-Pb zircon geochronology of the Hurungwe granite northwest Zimbabwe: age constraints on the timing of the Magondi orogeny and implications for correlation between the Kheis and Magondi Belts. S Afr J Geol 104:39–46

    Article  Google Scholar 

  • McDougall I (1963) Potassium-argon age measurements on dolerites from Antarctica and South Africa. J Geophys Res 68:1535–1545

    Article  Google Scholar 

  • McElhinny MW (1966) The palaeomagnetism of the Umkondo Lavas, Eastern Southern Rhodesia. Geophys J Roy Astron Soc 10:375–381

    Article  Google Scholar 

  • McElhinny MW, Opdyke ND (1964) The paleomagnetism of the Precambrian dolerites of eastern Southern Rhodesia, an example of geologic correlation by rock magnetism. J Geophys Res 69:1465–1475

    Article  Google Scholar 

  • Meier DL, Heinrich CA, Watts MA (2009) Mafic dikes displacing Witwatersrand gold reefs: evidence against metamorphic-hydrothermal ore formation. Geology 37:607–610. https://doi.org/10.1130/G25657A

    Article  Google Scholar 

  • Mertanen S, Hölttä P, Pesonen LJ, Paavola L (2006) In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke Swarms—time markers of crustal evolution: selected papers of the fifth international dyke conference in Finland, Rovaniemi, Finland, 31 July–3 Aug 2005 & Fourth international dyke conference, Kwazulu-Natal, South Africa 26–29 June 2001. CRC Press, London, pp 243–256

    Google Scholar 

  • Miller RM (2008) The geology of Namibia, vol 1, Archean to Mesoproterozoic, vol 1. Ministry of Mines and Energy, Geological Survey of Namibia, Windhoek

    Google Scholar 

  • Miller RM (2012) Review of Mesoproterozoic magmatism, sedimentation and terrane amalgamation in southwestern Africa. S Afr J Geol 115(4):417–448

    Article  Google Scholar 

  • Mitchell RN, Hoffman PF, Evans DAD (2010) Coronation loop resurrected: oscillatory apparent polar wander of Orosirian (2.05–1.8 Ga) paleomagnetic poles from Slave craton. Precambrian Res 179:121–134

    Article  Google Scholar 

  • Moen HFG (1999) The Kheis Tectonic Subprovince, southern Africa: a lithostratigraphic perspective. S Afr J Geol 102(1):27–42

    Google Scholar 

  • Moore M, Davis DW, Robb LJ, Jackson MC, Grobler DF (1993) Archean rapakivi granite-anorthosite-rhyolite complex in the Witwatersrand basin hinterland, southern Africa. Geology 21:1031–1034

    Article  Google Scholar 

  • Mukasa SB, Wilson AH, Young KR (2013) Geochronological constraints on the magmatic and tectonic development of the Pongola Supergroup (Central Region), South Africa. Precambrian Res 224:268–286

    Article  Google Scholar 

  • Mukwakwami J (2005) Structural geology of the Umkondo Group in eastern Zimbabwe and geochronology of associated mafic rocks and possible correlatives in Zimbabwe. Unpublished PhD thesis, University of Zimbabwe, Harare, Zimbabwe

    Google Scholar 

  • Mungall JE, Kamo SL, McQuade S (2016) U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa. Nat Commun 7:13385. https://doi.org/10.1038/ncomms13385

    Article  Google Scholar 

  • Munyanyiwa H (1999) Geochemical study of the Umkondo dolerites and lavas in the Chimanimani and Chipinge districts (eastern Zimbabwe) and their regional implications. J Afr Earth Sci 28(2):349–365

    Article  Google Scholar 

  • Nhleko N (2003) The Pongola Supergroup in Swaziland. Unpublished PhD thesis, Rand Afrikaans University, Johannesburg, South Africa

    Google Scholar 

  • Oberthür T, Davis DW, Blenkinsop TG, Höhndorf A (2002) Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Res 113(3–4):293–305

    Article  Google Scholar 

  • Olsson JR, Söderlund U, Klausen MB, Ernst RE (2010) U-Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambrian Res 183:490–500

    Article  Google Scholar 

  • Olsson JR, Söderlund U, Hamilton MA, Klausen MB, Helffrich GR (2011) A late Archean radiating dyke swarm as possible clue to the origin of the Bushveld Complex. Nat Geosci 4:865–869

    Article  Google Scholar 

  • Olsson JR, Klausen M, Hamilton M, März N, Söderlund U, Roberts RJ (2016) Baddeleyite U-Pb ages and geochemistry of the 1875–1835 Ma Black Hills Dyke Swarm across north-eastern South Africa: part of a trans-Kalahari Craton back-arc setting? GFF 138(1):183–202. https://doi.org/10.1080/11035897.2015.1103781

    Article  Google Scholar 

  • Panzik JE, Evans DAD, Kasbohm JJ, Hanson RE, Gose WA, Desormeau J (2016) Using palaeomagnetism to determine late Mesoproterozoic palaeogeographic history and tectonic relations of the Sinclair Terrane, Namaqua orogen, Namibia. In: Li ZX, Evans DAD, Murphy JB (eds) Supercontinent cycles through earth history. Geological Society of London Special Publication, 424. Geological Society of London, London, pp 119–143

    Article  Google Scholar 

  • Peng P (2015) Precambrian mafic dyke swarms in the North China Craton and their geological implications. Sci China: Earth Sci 58:649–675

    Article  Google Scholar 

  • Peng P, Guo J, Windley BF, Li X (2011) Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: products of Late Paleoproterozoic ridge subduction. Precambrian Res 187:165–180

    Article  Google Scholar 

  • Pesonen LJ, Elming SÅ, Mertanen S, Pisrevsky S, D’Agrella-Filho MS, Meert JG, Schmidt PW, Abrahamsen N, Bylund G (2003) Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics 375:289–324

    Article  Google Scholar 

  • Pettersson Å, Cornell DH, Moen HFG, Reddy S, Evans D (2007) Ion-probe dating of 1.2 Ga collision and crustal architecture in the Namaqua-Natal Province of southern Africa. Precambrian Res 158(1–2):79–92. https://doi.org/10.1016/j.precamres.2007.04.006

    Article  Google Scholar 

  • Pisarevsky SA, Wingate MTD, Powell CM, Johnson S, Evans DAD (2003) Models of Rodinia assembly and fragmentation. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological society, London, Special Publication, vol 206. Geological Society, London, pp 35–55

    Article  Google Scholar 

  • Pisarevsky S, De Waele B, Jones S, Söderlund U, Ernst RE (2015) Paleomagnetism and U-Pb age of the 2.4 Ga Erayinia mafic dykes on the south-western Yilgarn, Western Australia: paleogeographic and geodynamic implications. Precambrian Res 259:222–231. https://doi.org/10.1016/j.precamres.2014.05.023

    Article  Google Scholar 

  • Polteau S, Moore JM, Tsikos H (2006) The geology and geochemistry of the Paleoproterozoic Makganyene diamictite. Precambrian Res 148:257–274. https://doi.org/10.1016/j.precamres.2006.05.003

    Article  Google Scholar 

  • Poujol M, Kiefer R, Robb LJ, Anhaeusser CR, Armstrong RA (2005) New U-Pb data on zircons from the Amalia greenstone belt Southern Africa: insights into the Neoarchean evolution of the Kaapvaal Craton. S Afr J Geol 108(3):317–332

    Article  Google Scholar 

  • Powell C, Jones DL, Pisarevsky SA, Wingate MTD (2001) Palaeomagnetic constraints on the position of the Kalahari craton in Rodinia. Precambr Res 110 (1–4):33–46

    Article  Google Scholar 

  • Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal MEA (2012) Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the rectonic evolution and paleogeographic reconstructions. Precambrian Res 198–199:51–76

    Article  Google Scholar 

  • Rasmussen B, Bekker A, Fletcher IR (2013) Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet Sci Lett 382:173–180. https://doi.org/10.1016/j.epsl.2013.08.037

    Article  Google Scholar 

  • Reid DL (1997) Sm-Nd age and REE geochemistry of Proterozoic arc-related igneous rocks in the Richtersveld Subprovince, Namaqua Mobile Belt, southern Africa. J Afr Earth Sci 24:621–633

    Article  Google Scholar 

  • Reid DL, Ransome IGD, Onstott TC, Adams CJ (1991) Time of emplacement and metamorphism of Late Precambrian mafic dykes associated with the Pan-African Gariep orogeny, Southern Africa: implications for the Nama Group. J Afr Earth Sci 13(3):531–541

    Article  Google Scholar 

  • Reischmann T (1995) Precise U/Pb age determination with baddeleyite (ZrO2), a case study from the Palaborwa Igneous Complex, South Africa. S Afr J Geol 98:1–4

    Google Scholar 

  • Rioux M, Bowring SA, Dudás F, Hanson RE (2010) Characterizing the U-Pb systematics of baddeleyite through chemical abrasion: application of multi-step digestion methods to baddeleyite geochronology. Contrib Mineral Petrol 160:777–801. https://doi.org/10.1007/s00410-010-0507-1

    Article  Google Scholar 

  • Rivalta E, Taisne B, Bunger AP, Katz RF (2015) A review of mechanical models of dike propagation: schools of thought, results and future diections. Tectonophysics 638:1–42

    Article  Google Scholar 

  • Robb LJ, Armstrong RA, Waters DJ (1999) The history of granulite-facies metamorphism and crustal growth from single zircon U-Pb geochronology, Namaqualand, South Africa. J Petrol 40:1747–1770

    Article  Google Scholar 

  • Roering C, Van Reenen DD, Smit CA, Barton JM Jr, De Beer JH, De Wit MJ, Stettler EH, Van Schalkwyk JF, Stevens G, Pretorius S (1992) Tectonic model for the evolution of the Limpopo Belt. Precambrian Res 55:539–552

    Article  Google Scholar 

  • Rogers C, Mackinder A, Ernst RE, Cousens B (2016) Mafic magmatism in the Belt-Purcell Basin and Wyoming Province of western Laurentia. Geol Soc Am Spec Pap 522

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

    Article  Google Scholar 

  • Savko KA, Samsonov AV, Kholin VM, Bazikov NS (2017) The Sarmatia Megablock as a fragment of the Vaalbara Supercontinent: correlation of geological events at the Archean-Paleoproterozoic transition. Stratigr Geol Correl 25(2):123–145. https://doi.org/10.1134/S0869593817020058

    Article  Google Scholar 

  • Schaller M, Steiner O, Studer I, Holzer L, Herwegh M, Kramers JD (1999) Exhumation of Limpopo Central Zone granulites and dextral continent-scale stranscurrent movement at 2.0 Ga along the Palala Shear Zone, Northern province, South Africa. Precambrian Res 96:263–288

    Article  Google Scholar 

  • Schmitz MD, Bowring SA, De Wit MJ, Gartz V (2004) Subduction and terrane collosion stabilize the western Kaapvaal craton tectosphere 2.9 billion years ago. Earth Planet Sci Lett 222:363–376

    Article  Google Scholar 

  • Schreiner GDL, Van Niekerk CB (1958) The age of the Pilanesberg dyke from the Central Witwatersrand. Trans Proc Geol Soc S Afr 61:198–199

    Google Scholar 

  • Schröder S, Beukes NJ, Armstrong RA (2016) Detrital zircon constraints on the tectonostratigraphy of the Paleoproterozoic Pretoria Group, South Africa. Precambrian Res 278:362–393. https://doi.org/10.1016/j.precamres.2016.03.016

    Article  Google Scholar 

  • Sharpe MR (1981) The chronology of magma influxes to the eastern compartment of the Bushveld Complex as exemplified by its marginal border groups. J Geol Soc Lond 138:307–326

    Article  Google Scholar 

  • Sharpe MR (1982) Petrology, classification and chronology of the intrusion of mafic sills beneath the eastern Bushveld Complex, vol 37. Institute for the geological research on the Bushveld Complex, Pretoria, South Africa

    Google Scholar 

  • Singletary SJ, Hanson RE, Martin MW, Crowley JL, Bowring SA, Key RM, Ramokate LV, Direng BB, Krol MA (2003) Geochronology of basement rocks in the Kalahari Desert, Botswana, and implications for regional Proterozoic tectonics. Precambrian Res 121:47–71

    Article  Google Scholar 

  • Smirnov AV, Evans DAD, Ernst RE, Söderlund U, Li Z-X (2013) Trading partners: tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambrian Res 224:11–22. https://doi.org/10.1016/j.precamres.2012.09.020

    Article  Google Scholar 

  • Söderlund U, Johansson L (2002) A simple way to extract baddeleyite (ZrO2). Geochem Geophys Geosystems 3(2). https://doi.org/10.1029/2001gc000212

    Article  Google Scholar 

  • Söderlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson P-O (2010) Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Res 183(3):388–398. https://doi.org/10.1016/j.precamres.2009.11.001

    Article  Google Scholar 

  • Strik G, De Wit MJ, Langereis CG (2007) Palaeomagnetism of the Neoarchaean Pongola and Ventersdorp Supergroups and an appraisal of the 3.0–1.9 Ga apparent polar wander path of the Kaapvaal Craton, Southern Africa. Precambrian Res 153:96–115

    Article  Google Scholar 

  • Swanson-Hysell NL, Killian TM, Hanson RE (2015) A new grand mean paleomagnetic pole for the Umkondo Igneous Province with implications for paleogeography and the geomagnetic field. Geophys J Int 203:2237–2247

    Article  Google Scholar 

  • Thomas RJ, Jacobs J, Eglington BM (2000) Geochemistry and isotopic evolution of the Mesoproterozoic Cape Meredith Complex. West Falkland Geol Mag 137(5):537–553

    Article  Google Scholar 

  • Tinker J, De Wit MJ, Grotzinger J (2002) Seismic stratigraphic constraints on Neoarchean-Paleoproterozoic evolution of the western margin of the Kaapvaal Craton, South Africa. S Afr J Geol 105:107–134

    Article  Google Scholar 

  • Treloar PJ (1988) The geological evolution of the Magondi Mobile Belt, Zimbabwe. Precambrian Res 38(1):55–73

    Article  Google Scholar 

  • Uken R, Watkeys MK (1997) An interpretation of mafic dyke swarms and their relationship with major mafic magmatic events on the Kaapvaal Craton and Limpopo Belt. S Afr J Geol 100:341–348

    Google Scholar 

  • Van der Westhuizen WA, De Bruiyn H, Meinties PG (1991) The Ventersdorp Supergroup; an overview. J Afr Earth Sci 13(1):83–105

    Article  Google Scholar 

  • Van der Westhuizen WA, De Bruiyn H, Meintjies PG (2006) The Ventersdorp Supergroup. In: Johnson MR, Anhaeusser C (eds) The geology of South Africa. Geological Society of South Africa/Council for Geoscience, Johannesburg/Pretoria, pp 187–208

    Google Scholar 

  • Van Niekerk CB (1962) The age of the Gemspost dyke from the Venterspost Gold Mine. Trans Geol Soc S Afr 65:105–111

    Google Scholar 

  • Van Tongeren JA, Zirakparvar NA, Mathez EA (2016) Hf isotopic evidence for a cogenetic magma source for the Bushveld Complex and associated felsic magmas. Lithos 248:469–477

    Article  Google Scholar 

  • Verwoerd WJ (2006) The Pilanesberg Alkaline Province. In: Johnston MR, Anhaeusser C (eds) The geology of South Africa. The Geological Society of South Africa and the Council for Geoscience, Pretoria, pp 381–393

    Google Scholar 

  • Wabo H, De Kock MO, Klausen M, Söderlund U, Beukes NJ (2015a) Paleomagnetism and chronology of B-1 marginal sills of the Bushveld Complex from the eastern Kaapvaal Craton, South Africa. GFF. https://doi.org/10.1080/11035897.2015.1099566

    Article  Google Scholar 

  • Wabo H, Olsson JR, De Kock MO, Humbert F, Söderlund U, Klausen M (2015b) New U-Pb age and paleomagnetic constraints from the UItkomst Complex, South Africa: clues to the timing of intrusion. GFF. https://doi.org/10.1080/11035897.2015.1098726

    Article  Google Scholar 

  • Wabo H, Humbert F, De Kock MO, Söderlund U, Maré L, Beukes NJ (2019) Constraining the chronology of the Mashishing dykes from the eastern Kaapvaal craton in South Africa. In: Srivastava RK, Ernst RE, Peng P (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology. https://doi.org/10.1007/978-981-13-1666-1_6

  • Walraven F, Hattingh E (1993) Geochronology of the Nebo granite, Bushveld Complex. S Afr J Geol 96:31–41

    Google Scholar 

  • Walraven F, Pape J (1994) Pb-Pb whole-rock ages for the Pongola Supergroup and the Usushwana Complex, South Africa. J Afr Earth Sci 18:297–308. https://doi.org/10.1016/0899-5362(94)90069-8

    Article  Google Scholar 

  • Walraven F, Smith CB, Kruger FJ (1991) Age determinations of the Zoetlief Group—a Ventersdorp Supergroup correlative. S Afr J Geol 94(2):220–227

    Google Scholar 

  • Walraven F, Froick C, Lubala RT (1992) Pb-isotope geochronology of the Schiel Complex, northern Transvaal, South Africa. J Afr Earth Sci 15:103–110

    Article  Google Scholar 

  • Walraven F, Grobler DF, Key RM (1996) Age equivalents of the Plantation Porphyry and the Kanye Volcanic Formation, southeastern Botswana. S Afr J Geol 99:23–31

    Google Scholar 

  • Walraven F (1997) Geochronology of the Rooiberg Group, Transvaal Supergroup, South Africa. EGRI Information Circular 316, University of the Witwatersrand, 21pp

    Google Scholar 

  • Ward SE, Hall RP, Huges DJ (2000) Guruve and Mutare dykes: preliminary geochemical indication of complex Mesoproterozoic mafic magmatic systems in Zimbabwe. J Afr Earth Sci 30(3):689–701

    Article  Google Scholar 

  • Wilson JF, Jones DL, Kramers JD (1987) Mafic dyke swarms of Zimbabwe. In: Halls HC, Fahring AF (eds) Mafic Dyke Swarms, vol 34. Geological Association of Canada Special Papers, pp 433–444

    Google Scholar 

  • Wilson JF, Nesbitt RW, Fanning M (1995) Zircon geochronology of Archean felsic sequences in the Zimbabwe Craton: a revision of the greenstone belt stratigraphy and model for crustal growth. In: Coward MP, Reis AC (eds) Early Precambrian Processes, Geological Society, London, Special Publication, vol 95, pp 109–126

    Google Scholar 

  • Wingate MTD (1998) A palaeomagnetic test of the Kaapvaal-Pilbara (Vaalbara) connection at 2.78 Ga. S Afr J Geol 101(4):257–274

    Google Scholar 

  • Wingate MTD (2000) Ion microprobe U-Pb zircon and baddeleyite ages for the Great Dyke and its satellite dykes, Zimbabwe. S Afr J Geol 103(1):74–80

    Article  Google Scholar 

  • Wingate MTD (2001) SHRIMP baddeleyite and zircon ages for an Umkondo dolerite sill, Nyanga Mountains, Eastern Zimbabwe. S Afr J Geol 104:13–22

    Article  Google Scholar 

  • Woodhead J, Hergt J, Phillps D, Paton C (2009) African kimberlites revisited: in situ Sr-isotope analysis of groundmass perovskite. Lithos 112(Supplement 1):311–317

    Article  Google Scholar 

  • Wu F-Y, Yang Y-H, Li Q-L, Mitchell RH, Dawson JB, Brandl G, Yuhara M (2011) In situ determinations of U-Pb ages and Sr-Nd-Hf isotopic constraints on petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos 127:309–322

    Article  Google Scholar 

  • Wu F-Y, Mitchell RH, Li Q-L, Sun J, Liu C-Z, Yang Y-H (2013) In situ U-Pb age determination and Sr-Nd isotopic analysis of perovskite from the Premier (Cullinana) kimberlite, South Africa. Chem Geol 353:83–95

    Article  Google Scholar 

  • Xie H, Kröner A, Brandl G, Wan Y (2017) Two orogeneic events separated by 2.6 Ga mafic dykes in the Central Zone, Limpopo Belt, southern Africa. Precambrian Res 289:129–141

    Article  Google Scholar 

  • Zegers TE, De Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259

    Article  Google Scholar 

  • Zeh A, Ovtcharova M, Wilson AH, Schaltegger U (2015) The Bushveld Complex was emplaced and cooled in less than one million years—results of zirconology, and geotectonic implications. Earth Planet Sci Lett 418:103–114

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Richard Hanson and Wlady Altermann for their detailed and constructive reviews. MOdK acknowledge support from the South African Department of Science and Technology and National Research Foundation (DST-NRF) Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA). Additional support from the South Africa National Research Foundation through their incentive funding is acknowledged by MOdk and MBK. APG and US wish to thank both the Swedish Research Council and the Royal Physiographic Society in Lund for financial assistance. Much of the geochronology presented was funded by the Industry-Academia-Government Consortium Project “Reconstruction of Supercontinents Back to 2.7 Ga Using the Large Igneous Province (LIP) Record, with Implications for Mineral Deposit Targeting, Hydrocarbon Resource Exploration, and Earth System Evolution” (www.supercontinent.org). Here we would specifically like to thank Richard Ernst for his leading role. Many of the ages are the products of MSc and PhD projects, and we acknowledge the numerous students for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. de Kock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Kock, M.O., Gumsley, A.P., Klausen, M.B., Söderlund, U., Djeutchou, C. (2019). The Precambrian Mafic Magmatic Record, Including Large Igneous Provinces of the Kalahari Craton and Its Constituents: A Paleogeographic Review. In: Srivastava, R., Ernst, R., Peng, P. (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1666-1_5

Download citation

Publish with us

Policies and ethics