Skip to main content
Log in

Influence of Cerebral Glucose Metabolism by Chronic Pain–Mediated Cognitive Impairment in Adolescent Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chronic pain during adolescence can lead to mental health disorders in adulthood, but the underlying mechanism is still unclear. Furthermore, the homeostasis of cerebral glucose metabolism and neurotransmitter metabolic kinetics are closely associated with cognitive development and pain progression. The present study investigated changes in cognitive function and glucose metabolism in adult rats, which had experienced chronic pain during their adolescence. Here, spared nerve injury (SNI) surgery was conducted in 4-week-old male rats. Mechanical nociceptive reflex thresholds were analyzed, and SNI chronic pain (SNI-CP) animals were screened. Based on animal behavioral tests (open field, three-chambered social, novel object recognition and the Y maze), the SNI-CP animals showed learning and memory impairment and anxiety-like behaviors, compared to SNI no chronic pain (SNI-NCP) animals. The cerebral glucose metabolism in the prefrontal cortex and hippocampus of adult SNI-CP animals was decreased with positron emission tomography/computed tomography. GABA2 and Glu4 levels in the metabolic kinetics study were significantly decreased in the hippocampus, frontal cortex, and temporal cortex, and the expression of GLUT3 and GLUT4 was also significantly downregulated in the prefrontal cortex and hippocampus of adult rats in the SNI-CP group. These findings suggest that the rats which suffered chronic pain during adolescence have lower cerebral glucose metabolism in the cortex and hippocampus, which could be related to cognitive function during the development of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

All raw data and materials during the current study are available from the corresponding author upon reasonable request.

References

  1. Kashyap MP, Roberts C, Waseem M, Tyagi P (2018) Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol Neurobiol 55(8):6939–6955. https://doi.org/10.1007/s12035-018-0885-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shantanu PA, Sharma D, Sharma M, Vaidya S, Sharma K, Kalia K, Tao YX, Shard A et al (2019) Kinesins: motor proteins as novel target for the treatment of chronic pain. Mol Neurobiol 56(6):3854–3864. https://doi.org/10.1007/s12035-018-1327-y

    Article  CAS  PubMed  Google Scholar 

  3. Bonezzi C, Fornasari D, Cricelli C, Magni A, Ventriglia G (2020) Not all pain is created equal: basic definitions and diagnostic work-up. Pain Ther 9(Suppl 1):1–15. https://doi.org/10.1007/s40122-020-00217-w

    Article  PubMed  PubMed Central  Google Scholar 

  4. Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YE, Shen L, Zachariou V (2017) Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal 10 (471). https://doi.org/10.1126/scisignal.aaj1549

  5. Zhou W, Jin Y, Meng Q, Zhu X, Bai T, Tian Y, Mao Y, Wang L et al (2019) A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci 22(10):1649–1658. https://doi.org/10.1038/s41593-019-0468-2

    Article  CAS  PubMed  Google Scholar 

  6. Husak AJ, Bair MJ (2020) Chronic pain and sleep disturbances: a pragmatic review of their relationships, comorbidities, and treatments. Pain Med (Malden, Mass) 21(6):1142–1152. https://doi.org/10.1093/pm/pnz343

    Article  Google Scholar 

  7. Moriarty O, McGuire BE, Finn DP (2011) The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol 93(3):385–404. https://doi.org/10.1016/j.pneurobio.2011.01.002

    Article  PubMed  Google Scholar 

  8. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55(3):377–391. https://doi.org/10.1016/j.neuron.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  9. Hooten WM (2016) Chronic pain and mental health disorders: shared neural mechanisms, epidemiology, and treatment. Mayo Clin Proc 91 (7):955-970. https://doi.org/10.1016/j.mayocp.2016.04.029 %/ Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173. https://doi.org/10.1523/jneurosci.3576-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bushnell MC, Ceko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14(7):502–511. https://doi.org/10.1038/nrn3516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corradi-Dell’Acqua C, Tusche A, Vuilleumier P, Singer T (2016) Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nat Commun 7:10904. https://doi.org/10.1038/ncomms10904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simpson JJ, Drevets WC, Snyder AZ, Gusnard DA, Raichle ME (2001) Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc Natl Acad Sci U S A 98(2):688–693. https://doi.org/10.1073/pnas.98.2.688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liossi C, Howard RF (2016) Pediatric chronic pain: biopsychosocial assessment and formulation. Pediatrics 138 (5). https://doi.org/10.1542/peds.2016-0331 %/ Copyright © 2016 by the American Academy of Pediatrics.

  15. Chehadi O, Rusu AC, Konietzny K, Schulz E, Köster O, Schmidt-Wilcke T, Hasenbring MI (2018) Brain structural alterations associated with dysfunctional cognitive control of pain in patients with low back pain. Eur J Pain (London, England) 22(4):745–755. https://doi.org/10.1002/ejp.1159

    Article  CAS  Google Scholar 

  16. Khera T, Rangasamy V (2021) Cognition and pain: a review. Front Psychol 12:673962. https://doi.org/10.3389/fpsyg.2021.673962

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dahlke LA, Sable JJ, Andrasik F (2017) Behavioral therapy: emotion and pain, a common anatomical background. Neurol Sci 38(Suppl 1):157–161. https://doi.org/10.1007/s10072-017-2928-3

    Article  PubMed  Google Scholar 

  18. Malfliet A, Coppieters I, Van Wilgen P, Kregel J, De Pauw R, Dolphens M, Ickmans K (2017) Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review. Eur J Pain (London, England) 21(5):769–786. https://doi.org/10.1002/ejp.1003

    Article  CAS  Google Scholar 

  19. Lau JYF, Heathcote LC, Beale S, Gray S, Jacobs K, Wilkinson N, Crombez G (2018) Cognitive biases in children and adolescents with chronic pain: a review of findings and a call for developmental research. J Pain 19(6):589–598. https://doi.org/10.1016/j.jpain.2018.01.005

    Article  PubMed  Google Scholar 

  20. You Z, Zhang S, Shen S, Yang J, Ding W, Yang L, Lim G, Doheny JT et al (2018) Cognitive impairment in a rat model of neuropathic pain: role of hippocampal microtubule stability. Pain 159(8):1518–1528. https://doi.org/10.1097/j.pain.0000000000001233

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shiraishi S, Kobayashi H, Nihashi T, Kato K, Iwano S, Nishino M, Ishigaki T, Ikeda M et al (2006) Cerebral glucose metabolism change in patients with complex regional pain syndrome: a PET study. Radiat Med 24(5):335–344. https://doi.org/10.1007/s11604-006-0035-0

    Article  PubMed  Google Scholar 

  22. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  PubMed  Google Scholar 

  23. Hannibal KE, Bishop MD (2014) Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 94(12):1816–1825. https://doi.org/10.2522/ptj.20130597

    Article  PubMed  PubMed Central  Google Scholar 

  24. Coppieters I, Ickmans K, Cagnie B, Nijs J, De Pauw R, Noten S, Meeus M (2015) Cognitive performance is related to central sensitization and health-related quality of life in patients with chronic whiplash-associated disorders and fibromyalgia. Pain Physician 18(3):E389-401

    PubMed  Google Scholar 

  25. Guida F, De Gregorio D, Palazzo E, Ricciardi F, Boccella S, Belardo C, Iannotta M, Infantino R et al (2020) Behavioral, biochemical and electrophysiological changes in spared nerve injury model of neuropathic pain. International journal of molecular sciences 21 (9). https://doi.org/10.3390/ijms21093396

  26. Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46(3):243–250. https://doi.org/10.1001/archpsyc.1989.01810030049007

    Article  CAS  PubMed  Google Scholar 

  27. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26(7):865–877. https://doi.org/10.1038/sj.jcbfm.9600263

    Article  CAS  PubMed  Google Scholar 

  28. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 102(15):5588–5593. https://doi.org/10.1073/pnas.0501703102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giordano C, Cristino L, Luongo L, Siniscalco D, Petrosino S, Piscitelli F, Marabese I, Gatta L et al (2012) TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. Cereb Cortex 22(11):2495–2518. https://doi.org/10.1093/cercor/bhr328

    Article  PubMed  Google Scholar 

  30. Guida F, Luongo L, Marmo F, Romano R, Iannotta M, Napolitano F, Belardo C, Marabese I et al (2015) Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain 8:47. https://doi.org/10.1186/s13041-015-0139-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463. https://doi.org/10.1016/s0149-7634(00)00014-2

    Article  CAS  PubMed  Google Scholar 

  32. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87(2):149–158. https://doi.org/10.1016/s0304-3959(00)00276-1

    Article  PubMed  Google Scholar 

  33. Zhu J, Zhang Z, Jia J, Wang L, Yang Q, Wang Y, Chen C (2020) Sevoflurane induces learning and memory impairment in young mice through a reduction in neuronal glucose transporter 3. Cell Mol Neurobiol 40(6):879–895. https://doi.org/10.1007/s10571-019-00779-0

    Article  CAS  PubMed  Google Scholar 

  34. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR (2011) Assessment of social interaction behaviors. J Vis Exp (48). https://doi.org/10.3791/2473

  35. van der Kooij MA, Jene T, Treccani G, Miederer I, Hasch A, Voelxen N, Walenta S, Müller MB (2018) Chronic social stress-induced hyperglycemia in mice couples individual stress susceptibility to impaired spatial memory. Proc Natl Acad Sci U S A 115 (43):E10187-E10196. https://doi.org/10.1073/pnas.1804412115 %/ Copyright © 2018 the Author(s). Published by PNAS

  36. Wu L, Niu Z, Hu X, Liu H, Li S, Chen L, Zheng D, Liu Z et al (2020) Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury. FASEB J 34(8):10547–10559. https://doi.org/10.1096/fj.202000447R

    Article  CAS  PubMed  Google Scholar 

  37. Guo M, Fang Y, Zhu J, Chen C, Zhang Z, Tian X, Xiang H, Manyande A et al (2021) Investigation of metabolic kinetics in different brain regions of awake rats using the [(1)H-(13)C]-NMR technique. J Pharm Biomed Anal 204:114240. https://doi.org/10.1016/j.jpba.2021.114240%/Copyright©2021ElsevierB.V.Allrightsreserved

    Article  CAS  PubMed  Google Scholar 

  38. Vinall J, Pavlova M, Asmundson GJ, Rasic N, Noel M (2016) Mental health comorbidities in pediatric chronic pain: a narrative review of epidemiology, models, neurobiological mechanisms and treatment. Children (Basel, Switzerland) 3 (4). https://doi.org/10.3390/children3040040

  39. Shelby GD, Shirkey KC, Sherman AL, Beck JE, Haman K, Shears AR, Horst SN, Smith CA et al (2013) Functional abdominal pain in childhood and long-term vulnerability to anxiety disorders. J Pediatrics. 132(3):475–482. https://doi.org/10.1542/peds.2012-2191

    Article  Google Scholar 

  40. Maes M, Van den Noortgate W, Fustolo-Gunnink SF, Rassart J, Luyckx K, Goossens L (2017) Loneliness in children and adolescents with chronic physical conditions: a meta-analysis. J Pediatr Psychol 42(6):622–635. https://doi.org/10.1093/jpepsy/jsx046

    Article  PubMed  Google Scholar 

  41. Noel M, Wilson AC, Holley AL, Durkin L, Patton M, Palermo TM (2016) Posttraumatic stress disorder symptoms in youth with vs without chronic pain. Pain 157(10):2277–2284. https://doi.org/10.1097/j.pain.0000000000000642

    Article  PubMed  PubMed Central  Google Scholar 

  42. Evans S, Djilas V, Seidman LC, Zeltzer LK, Tsao JCI (2017) Sleep quality, affect, pain, and disability in children with chronic pain: is affect a mediator or moderator? J Pain 18(9):1087–1095. https://doi.org/10.1016/j.jpain.2017.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  43. Humo M, Lu H, Yalcin I (2019) The molecular neurobiology of chronic pain-induced depression. Cell Tissue Res 377(1):21–43. https://doi.org/10.1007/s00441-019-03003-z

    Article  PubMed  Google Scholar 

  44. Ab I, Williams LM, Antees C, Grieve SM, Foster SL, Gomes L, Korgaonkar MS (2018) Cognitive ability is associated with changes in the functional organization of the cognitive control brain network. Hum Brain Mapp 39(12):5028–5038. https://doi.org/10.1002/hbm.24342

    Article  Google Scholar 

  45. Fitzgerald M, McKelvey R (2016) Nerve injury and neuropathic pain - a question of age. Exp Neurol 275(Pt 2):296–302. https://doi.org/10.1016/j.expneurol.2015.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vega-Avelaira D, McKelvey R, Hathway G, Fitzgerald M (2012) The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol Pain 8:30. https://doi.org/10.1186/1744-8069-8-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165 (4):882-895. https://doi.org/10.1016/j.cell.2016.03.033 %/ Copyright © 2016 Elsevier Inc. All rights reserved.

  48. Krell-Roesch J, Syrjanen JA, Vassilaki M, Lowe VJ, Vemuri P, Mielke MM, Machulda MM, Stokin GB et al (2021) Brain regional glucose metabolism, neuropsychiatric symptoms, and the risk of incident mild cognitive impairment: the Mayo Clinic study of aging. Am J Geriatr Psychiatry 29(2):179–191. https://doi.org/10.1016/j.jagp.2020.06.006

    Article  PubMed  Google Scholar 

  49. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition (Burbank, Los Angeles County, Calif) 27(1):3–20. https://doi.org/10.1016/j.nut.2010.07.021

    Article  CAS  Google Scholar 

  50. Chen Z, Zhong C (2013) Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21-43. doi:https://doi.org/10.1016/j.pneurobio.2013.06.004 %/ Copyright © 2013 Elsevier Ltd. All rights reserved

  51. Su J, Huang Q, Ren S, Xie F, Zhai Y, Guan Y, Liu J, Hua F (2019) Altered brain glucose metabolism assessed by (18)F-FDG PET imaging is associated with the cognitive impairment of CADASIL. Neuroscience 417:35-44. doi:https://doi.org/10.1016/j.neuroscience.2019.07.048 %/ Copyright © 2019 IBRO. All rights reserved

  52. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  53. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH et al (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mao J, Mayer DJ, Price DD (1993) Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy. J Neurosci 13(6):2689–2702. https://doi.org/10.1523/jneurosci.13-06-02689.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vannucci SJ, Seaman LB, Brucklacher RM, Vannucci RC (1994) Glucose transport in developing rat brain: glucose transporter proteins, rate constants and cerebral glucose utilization. Mol Cell Biochem 140(2):177–184. https://doi.org/10.1007/bf00926756

    Article  CAS  PubMed  Google Scholar 

  56. Pearson-Leary J, McNay EC (2016) Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory. J Neurosci 36 (47):11851-11864. https://doi.org/10.1523/JNEUROSCI.1700-16.2016 %/ Copyright © 2016 the authors 0270-6474/16/3611851-14$15.00/0

  57. Ye T, Meng X, Zhai Y, Xie W, Wang R, Sun G, Sun X (2018) Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplASMIC RETICULUM STRESS and NLRP3 inflammasome activation. Front Pharmacol 9:1346. https://doi.org/10.3389/fphar.2018.01346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pang R, Wang X, Pei F, Zhang W, Shen J, Gao X, Chang C (2019) Regular exercise enhances cognitive function and intracephalic GLUT expression in Alzheimer’s disease model mice. J Alzheimers Dis 72(1):83–96. https://doi.org/10.3233/jad-190328

    Article  PubMed  Google Scholar 

  59. Peek AL, Rebbeck T, Puts NA, Watson J, Aguila MR, Leaver AM (2020) Brain GABA and glutamate levels across pain conditions: a systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 210:116532. doi:https://doi.org/10.1016/j.neuroimage.2020.116532 %/ Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved

  60. Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, Neugebauer V (2010) Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 30(15):5451–5464. https://doi.org/10.1523/jneurosci.0225-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ji G, Neugebauer V (2011) Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. J Neurophysiol 106(5):2642–2652. https://doi.org/10.1152/jn.00461.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiong B, Zhang W, Zhang L, Huang X, Zhou W, Zou Q, Manyande A, Wang J et al (2020) Hippocampal glutamatergic synapses impairment mediated novel-object recognition dysfunction in rats with neuropathic pain. Pain 161(8):1824–1836. https://doi.org/10.1097/j.pain.0000000000001878

    Article  CAS  PubMed  Google Scholar 

  63. Barros LF (2013) Metabolic signaling by lactate in the brain. Trends Neurosci 36(7):396–404. https://doi.org/10.1016/j.tins.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  64. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19(4):235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  65. Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I (2016) Lactate as a metabolite and a regulator in the central nervous system. International journal of molecular sciences 17 (9). https://doi.org/10.3390/ijms17091450

  66. Nilsson L, Siesjo BK (1975) The effect of phenobarbitone anaesthesia on blood flow and oxygen consumption in the rat brain. Acta Anaesthesiol Scand Suppl 57:18–24. https://doi.org/10.1111/j.1399-6576.1975.tb05408.x

    Article  CAS  PubMed  Google Scholar 

  67. Liu T, Li Z, He J, Yang N, Han D, Li Y, Tian X, Liu H et al (2020) Regional metabolic patterns of abnormal postoperative behavioral performance in aged mice assessed by 1H-NMR dynamic mapping method. Neurosci Bull 36(1):25–38. https://doi.org/10.1007/s12264-019-00414-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Yingying Chen, Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, for her help in cartoon illustrating.

Funding

This work was supported by the National Natural Science Foundation of China (NO. 81771160, 31771193 and 81901109).

Author information

Authors and Affiliations

Authors

Contributions

Yuanyuan Fang, Chang Chen, Jie Wang, and Zongze Zhang designed the study; Yuanyuan Fang, Qi Zhong, Lirong Wang, Zhu Gui, and Jinpiao Zhu performed the experiments; Yuanyuan Fang, Chang Chen, Jie Wang, and Fuqiang Xu contributed to the data. Yuanyuan Fang, Chang Chen, Jie Wang, Zongze Zhang, and Anne Manyande wrote the manuscript. The content of this manuscript has been reviewed, read, and agreed upon by all the designated authors.

Corresponding authors

Correspondence to Jie Wang or Zongze Zhang.

Ethics declarations

Ethics Approval

All animal procedures were carried out in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and were approved by the Animal Ethics Committee of Zhongnan Hospital of Wuhan University (Ethics approval number: ZN2021097).

Consent to Participate

Not applicable.

Consent for Publication

All the authors have read the manuscript and agreed for its publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Chen, C., Zhong, Q. et al. Influence of Cerebral Glucose Metabolism by Chronic Pain–Mediated Cognitive Impairment in Adolescent Rats. Mol Neurobiol 59, 3635–3648 (2022). https://doi.org/10.1007/s12035-022-02816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02816-4

Keywords

Navigation