Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filtering

Abstract

An exclusive advantage of semiconductor spintronics is its potential for opto-spintronics, which will allow integration of spin-based information processing/storage with photon-based information transfer/communications. Unfortunately, progress has so far been severely hampered by the failure to generate nearly fully spin-polarized charge carriers in semiconductors at room temperature. Here we demonstrate successful generation of conduction electron spin polarization exceeding 90% at room temperature without a magnetic field in a non-magnetic all-semiconductor nanostructure, which remains high even up to 110 °C. This is accomplished by remote spin filtering of InAs quantum-dot electrons via an adjacent tunnelling-coupled GaNAs spin filter. We further show that the quantum-dot electron spin can be remotely manipulated by spin control in the adjacent spin filter, paving the way for remote spin encoding and writing of quantum memory as well as for remote spin control of spin–photon interfaces. This work demonstrates the feasibility to implement opto-spintronic functionality in common semiconductor nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State-of-art spin generation in semiconductor materials.
Fig. 2: Principle of the defect-enabled remote spin filtering.
Fig. 3: Generation of record-high electron spin polarization at room temperature via remote spin filtering.
Fig. 4: Room temperature QD spin dynamics and effect of tunnelling barrier thickness.
Fig. 5: Room temperature remote spin manipulation of QD electrons by the spin precession of conduction band and defect electrons in GaNAs.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information.

References

  1. Wolf, S. A. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    ADS  Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    ADS  Google Scholar 

  3. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  ADS  Google Scholar 

  4. Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H. Spintronics (Academic, 2008).

    Google Scholar 

  5. Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  ADS  Google Scholar 

  6. Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  7. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  ADS  Google Scholar 

  8. Gurram, M., Omar, S. & Wees, B. Jvan Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nat. Commun. 8, 248 (2017).

    Article  ADS  Google Scholar 

  9. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  ADS  Google Scholar 

  10. Javadi, A. et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol. 13, 398–403 (2018).

    Article  ADS  Google Scholar 

  11. Luo, Z. et al. A spin–photon interface using charge-tunable quantum dots strongly coupled to a cavity. Nano Lett. 19, 7072–7077 (2019).

    Article  ADS  Google Scholar 

  12. Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).

    Article  ADS  Google Scholar 

  13. Commercial and industrial grade products. Cactus Technologies https://www.cactus-tech.com/wp-content/uploads/2019/03/Commercial-and-Industrial-Grade-Products.pdf (2019).

  14. Jonker, B. T. et al. Quantifying electrical spin injection: component-resolved electroluminescence from spin-polarized light-emitting diodes. Appl. Phys. Lett. 79, 3098–3100 (2001).

    Article  ADS  Google Scholar 

  15. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  16. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002).

    Article  ADS  Google Scholar 

  17. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  ADS  Google Scholar 

  18. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  ADS  Google Scholar 

  19. Cadiz, F. et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 18, 2381–2386 (2018).

    Article  ADS  Google Scholar 

  20. Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    Article  ADS  Google Scholar 

  21. Dong, X. Y. et al. Spin injection from the Heusler alloy Co2MnGe into Al0.1Ga0.9As/GaAs heterostructures. Appl. Phys. Lett. 86, 102107 (2005).

    Article  ADS  Google Scholar 

  22. Ramsteiner, M. et al. Co2FeSi/GaAs/(Al,Ga)As spin light-emitting diodes: competition between spin injection and ultrafast spin alignment. Phys. Rev. B 78, 121303 (2008).

    Article  ADS  Google Scholar 

  23. Chen, J.-Y., Wong, T.-M., Chang, C.-W., Dong, C.-Y. & Chen, Y.-F. Self-polarized spin-nanolasers. Nat. Nanotechnol. 9, 845–850 (2014).

    Article  ADS  Google Scholar 

  24. Chen, J. Y. et al. Efficient spin-light emitting diodes based on ingan/gan quantum disks at room temperature: a new self-polarized paradigm. Nano Lett. 14, 3130–3137 (2014).

    Article  ADS  Google Scholar 

  25. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  ADS  Google Scholar 

  26. Urbaszek, B. et al. Efficient dynamical nuclear polarization in quantum dots: temperature dependence. Phys. Rev. B 76, 201301 (2007).

    Article  ADS  Google Scholar 

  27. Beyer, J., Buyanova, I. A., Suraprapapich, S., Tu, C. W. & Chen, W. M. Strong room-temperature optical and spin polarization in InAs/GaAs quantum dot structures. Appl. Phys. Lett. 98, 203110 (2011).

    Article  ADS  Google Scholar 

  28. Zhu, B., Zeng, H., Dai, J., Gong, Z. & Cui, X. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl Acad. Sci. USA 111, 11606–11611 (2014).

    Article  ADS  Google Scholar 

  29. Dhall, R. et al. Strong circularly polarized photoluminescence from multilayer MoS2 through plasma driven direct-gap transition. ACS Photon. 3, 310–314 (2016).

    Article  Google Scholar 

  30. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  31. Kalevich, V. K. et al. Spin-dependent electron dynamics and recombination in GaAs1−xNx alloys at room temperature. JETP Lett. 85, 174–178 (2007).

    Article  ADS  Google Scholar 

  32. Wang, X. J. et al. Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor. Nat. Mater. 8, 198–202 (2009).

    Article  ADS  Google Scholar 

  33. Puttisong, Y., Buyanova, I. A. & Chen, W. M. Limiting factor of defect-engineered spin-filtering effect at room temperature. Phys. Rev. B 89, 195412 (2014).

    Article  ADS  Google Scholar 

  34. Chen, S. et al. Room-temperature polarized spin–photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects. Nat. Commun. 9, 3575 (2018).

    Article  ADS  Google Scholar 

  35. Meier, F., Zakharchenya, B. P. Optical Orientation (North Holland, 1984).

  36. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  ADS  Google Scholar 

  37. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  38. Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).

    Article  ADS  Google Scholar 

  39. Puttisong, Y. et al. Room-temperature electron spin amplifier based on Ga(In)NAs alloys. Adv. Mater. 25, 738–742 (2013).

    Article  Google Scholar 

  40. Marcinkevičius, S., Siegert, J. & Zhao, Q. X. Carrier spin dynamics in modulation-doped InAs/GaAs quantum dots. J. Appl. Phys. 100, 054310 (2006).

    Article  ADS  Google Scholar 

  41. Bi, W. G. & Tu, C. W. Bowing parameter of the band-gap energy of GaNxAs1−x. Appl. Phys. Lett. 70, 1608–1610 (1997).

    Article  ADS  Google Scholar 

  42. Pryor, C. E. & Flatté, M. E. Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys. Rev. Lett. 96, 026804 (2006).

    Article  ADS  Google Scholar 

  43. Aho, A., Korpijärvi, V., Tukiainen, A., Puustinen, J. & Guina, M. Incorporation model of N into GaInNAs alloys grown by radio-frequency plasma-assisted molecular beam epitaxy. J. Appl. Phys. 116, 213101 (2014).

    Article  ADS  Google Scholar 

  44. Gladysiewicz, M., Kudrawiec, R. & Wartak, M. S. Theoretical studies of optical gain tuning by hydrostatic pressure in GaInNAs/GaAs quantum wells. J. Appl. Phys. 115, 033515 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

W.M.C. acknowledges support from the Swedish Research Council (grant nos. 2016-05091 and 2020-04530) and from the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) (grant no. JA2014-5698); I.A.B. from the Swedish Research Council (grant nos. 2015-05532 and 2019-04312); W.M.C. and I.A.B. from Linköping University through the Professor Contracts and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU no. 2009-00971); M.G. from the European Research Council, ERC AdG AMETIST (grant no. 695116) and from the Academy of Finland, NanoLight project (grant no. 310985); T.H. from the Academy of Finland QuantSi project (grant no. 323989); A.M. from Japan Society for the Promotion of Science (JSPS) (grant nos. 16H06359 and 19H05507, and bilateral program); S.H. from JSPS (grant no. 19K15380). M.G. thanks M. Raappana for atomic force microscopy characterization and E. Anttola for samples preparation.

Author information

Authors and Affiliations

Authors

Contributions

W.M.C. conceived and coordinated the project. Y.Q.H. and P.J. conducted continuous-wave optical and magnetooptical experiments and analysed the data under the supervision of W.M.C. and I.A.B. The fabrication process of the experimental samples was developed by V.P., A.A. and T.H. under the supervision of M.G. Epitaxy and XRD characterization was performed by R.I. and A.A. S.H., S.S., J.T. and Y.Q.H. performed time-resolved optical and magnetooptical experiments and analysed data under the supervision of A.M., I.A.B. and W.M.C. Y.Q.H. and W.M.C. wrote the manuscript, with contributions from all other co-authors.

Corresponding authors

Correspondence to Yuqing Huang or Weimin M. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Xinyu Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Table 1 and Notes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Polojärvi, V., Hiura, S. et al. Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filtering. Nat. Photonics 15, 475–482 (2021). https://doi.org/10.1038/s41566-021-00786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00786-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing