
Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

From weak to weedy
Effective use of memory barriers in the ARM Linux Kernel

Will Deacon
will.deacon@arm.com

Embedded Linux Conference Europe
Edinburgh, UK

October 24, 2013



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Scope

Memory ordering is a complex topic!

• Different rules across different versions/implementations of
different architectures

• Not well understood by most software engineers

• Great potential for subtle, non-repeatable software bugs

• Key contributor to overall system performance

We will focus on the ARMv7 Linux kernel from a SW perspective
(the ARM ARM remains authoritative!).



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Sequential Consistency

A talk about memory ordering wouldn’t be complete without a
brief description of sequential consistency.

Sequential Consistency (SC):

‘A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified
by its program.’ – Leslie Lamport (1979)



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Sequential Consistency (2)

A

B

C

Program

B

p1

A

p0

C

p2



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Sequential Consistency (3)
SC makes SMP systems nice and easy to reason about. . .

. . . but the hardware guys hate it!

• Out-of-order and speculative execution

• Caches (and coherency in SMP)

• Write atomicity

• Store buffers (read bypass and write merging)

• Multi-ported bus topologies

• Memory-mapped I/O

Back to square one with memory latency!



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Memory Ordering

To facilitate these hardware optimisations, ordering of memory
operations is often relaxed from program order, potentially leading
to SC violations.

Initially: A = B = 0

p0

a: A = 2;

b: B = 1;

p1

c: C = B;

d: D = A;

Results

(C, D) == (0, 0)

(C, D) == (0, 2)

(C, D) == (1, 2)

(C, D) == (1, 0)

SC

?

?

?

?

This is defined by the memory (consistency) model for the
architecture.



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Memory Ordering

To facilitate these hardware optimisations, ordering of memory
operations is often relaxed from program order, potentially leading
to SC violations.

Initially: A = B = 0

p0

a: A = 2;

b: B = 1;

p1

c: C = B;

d: D = A;

Results

(C, D) == (0, 0)

(C, D) == (0, 2)

(C, D) == (1, 2)

(C, D) == (1, 0)

SC

Y (c, d, a, b)

Y (c, a, d, b)

Y (a, b, c, d)

N (d, a, b, c)

This is defined by the memory (consistency) model for the
architecture.



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Safety Nets

Weakly ordered memory models offer safety nets to the
programmer for explicit control over access ordering. These are
commonly referred to as barriers or fences.

The ARMv7 memory model includes:

• A range of barrier instructions

• Defined dependencies between accesses

• Memory types with different ordering constraints



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Observers

An observer is an agent in the system that can access memory:

• Not necessarily a CPU (which contains multiple observers!)

• Master within a given shareability domain (more later)

• Slave interfaces cannot observe any accesses



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Shareability Domains

Shareability domains define sets of observers within a system.

• {Non, Inner, Outer}-shareable and Full System

• Impact on cache coherency and shared memory

• Multiple domain instances (no strictly nested)

• System-specific, but architectural (and Linux) expectations

‘This architecture (ARMv7) is written with an expectation that all
processors using the same operating system or hypervisor are in the
same Inner Shareable shareability domain.’



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example Domains

A B C D

Memory

DMA



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example Domains (NSH)

A B C D

Memory

DMA



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example Domains (ISH)

A B C D

Memory

DMA



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example Domains (OSH)

A B C D

Memory

DMA



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example Domains (SY)

A B C D

Memory

DMA



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Observability

Ordering is defined in terms of observability by memory masters.

Writes
‘A write to a location in memory is said to be observed by an
observer when: (1) A subsequent read of the location by the same
observer will return the value written by the observed write, or
written by a write to that location by any observer that is
sequenced in the coherence order of the location after the observed
write and (2) A subsequent write of the location by the same
observer will be sequenced in the coherence order of the location
after the observed write’

This is actually pretty intuitive. . .



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Observability (2)

. . . but reads are observable too!

Reads
‘A read of a location in memory is said to be observed by an
observer when a subsequent write to the location by the same
observer will have no effect on the value returned by the read.’



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Global Observability and Completion

• A normal memory access is globally observed for a shareability
domain when it is observed by all observers in that domain.

• A table walk is complete for a shareability domain when its
accesses are globally observed in that domain and the TLB is
updated.

• An access is complete for a shareability domain when it is
globally observed in that domain and any table walks
associated with it have completed in the same domain.

Maintenance operations also have the notion of completion.



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams

A B

C D

Read

Write



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams

A B

C D

Read

Write

b

d

a

a



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Dependencies
In the absence of explicit barriers, dependencies define observation
order of normal memory accesses.

Address: value returned by a read is used to compute the
address of a subsequent access.

Control: value returned by a read is used to determine the
condition flags and the flags are used in the condition
code checking that determines the address of a
subsequent access.

Data: value returned by a read is used as data written by a
subsequent write.

There are also a few other rules (RaR, store speculation).



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Dependency Examples

ldr r1, [r0, #4]

and r1, #0xfff

ldr r3, [r2, r1]

(address)

ldr r1, [r0, #4]

cmp r1, #1

addeq r2, #4

ldr r3, [r2]

(control)

ldr r1, [r0, #4]

add r1, #5

str r1, [r2]

(data)

Question: Which dependencies enforce ordering of observability?



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Memory Barriers

The ARMv7 architecture defines three barrier instructions:

isb Pipeline flush and context synchronisation

dmb <option> Ensure ordering of memory accesses

dsb <option> Ensure completion of memory accesses

The <option> argument specifies the required shareability domain
(NSH, ISH, OSH, SY) and access type (ST). Defaults to ‘full
system’, all access types if omitted.



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DMB)

A B

C D

b0: data = 42;

b1: dmb ishst;

b2: flag = VALID;

b0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DMB)

A B

C D

b0: data = 42;

b1: dmb ishst;

b2: flag = VALID;
b1

b0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DMB)

A B

C D

b0: data = 42;

b1: dmb ishst;

b2: flag = VALID;

b2

b1b0

X



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DMB)

A B

C D

b0: data = 42;

b1: dmb ishst;

b2: flag = VALID;

b2

b0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DSB)

A B

C D

b2: flag = VALID;

b3: dsb ishst;

b4: sev();

b2

b1b0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DSB)

A B

C D

b2: flag = VALID;

b3: dsb ishst;

b4: sev();
b3

b2

b1b0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DSB)

A B

C D

b2: flag = VALID;

b3: dsb ishst;

b4: sev();

b3b2

b0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DSB)

A B

C D

b2: flag = VALID;

b3: dsb ishst;

b4: sev();

b2



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering Diagrams (DSB)

A B

C D

b2: flag = VALID;

b3: dsb ishst;

b4: sev();



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Overloading of barrier instructions
The barrier instructions are also overloaded to affect other parts of
the system:

Cache maintenance ordered by dmb [st] and completed
using dsb [st] on the same CPU

Branch predictor maintenance is completed at a context
synchronisation operation (e.g. isb)

TLB maintenance completed using dsb

PTE updates ‘published’ to walker with dsb [st] (MP
extensions)

isb required for explicit synchronisation with instruction stream.



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Barriers in Linux

Linux defines more barrier types than you can shake a stick at!

Compiler: barrier()

Mandatory: mb(), wmb(), rmb(),

(read barrier depends())

SMP conditional: smp * – domain?

MMIO write: (mmiowb())

Also implicit barriers in locks, atomics, bitops, I/O
accessors. . . (see Documentation/memory-barriers.txt).



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Low-level barriers

The ARM architecture port maps the Linux barriers onto the v7
instruction set:

• smp * ⇒ dmb [sy]; (SMP)

• rmb ⇒ dsb [sy];

• [w]mb ⇒ dsb [sy]; [outer sync();] (DMA)

There are also low-level barrier macros for ARM-specific code:

• dmb ⇒ dmb [sy];

• dsb ⇒ dsb [sy];

Spot the problem? (we’ve been getting away with it so far. . . )



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Extended API

From Linux 3.12, we can specify the domain and access type for
low-level barriers. This gives us a measurable performance boost,
but increases the scope for horrible bugs!

/* Write local pte */

dsb(nshst);

/* TLB invalidation */

dsb(nsh);

All implemented write barriers take the -st option and the smp *

barriers become inner-shareable. Be sure to grab a ‘recent’ binutils.



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: spin unlock

/*

* Ensure accesses don’t leak out

* from critical section

*/

smp_mb();

/* Release the lock */

lock->tickets.owner++;

/* Wake up waiting CPUs */

dsb_sev();

@ 3.11

dmb sy

ldrh r3, [r0]

add r3, r3, #1

strh r3, [r0]

dsb sy

sev



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: spin unlock

/*

* Ensure accesses don’t leak out

* from critical section

*/

smp_mb();

/* Release the lock */

lock->tickets.owner++;

/* Wake up waiting CPUs */

dsb_sev();

@ 3.12

dmb ish

ldrh r3, [r0]

add r3, r3, #1

strh r3, [r0]

dsb ishst

sev

@ ~5% hackbench

@ improvement on TC2!



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA To Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: str data, [mem]

a1: ?<barrier>?

a2: str #DMA EN, [ctrl]



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA To Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: str data, [mem]

a1: dmb st

a2: str #DMA EN, [ctrl]



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA To Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: str data, [mem]

a1: dmb st

a2: str #DMA EN, [ctrl]

a0

a1

a2



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Ordering of Observability Satisfied!

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: str data, [mem]

a1: dmb st

a2: str #DMA EN, [ctrl]

Race condition!

a0

a2

a1

a1



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA To Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: str data, [mem]

a1: dsb st /* wmb() */

a2: str #DMA EN, [ctrl]

a0

a1



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA From Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: ldr stat, [ctrl]

a1: cmp stat, #DMA DONE

a2: bne a0

a3: ?<barrier>?

a4: ldr data, [mem]



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA From Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: ldr stat, [ctrl]

a1: cmp stat, #DMA DONE

a2: bne a0

a3: dmb

a4: ldr data, [mem]



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA From Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: ldr stat, [ctrl]

a1: cmp stat, #DMA DONE

a2: bne a0

a3: dmb

a4: ldr data, [mem]a0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Speculation Through Control Dependency!

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: ldr stat, [ctrl]

a1: cmp stat, #DMA DONE

a2: bne a0

a3: dmb

a4: ldr data, [mem]

a0

a3a3

a4



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Speculation Through Control Dependency!

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: ldr stat, [ctrl]

a1: cmp stat, #DMA DONE

a2: bne a0

a3: dmb

a4: ldr data, [mem]

Race condition!

a4

a0

a3a3

a3

d0



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Example: DMA From Device

CPU

DMA (ctrl)
DMA (master)

Memory System

a0: ldr stat, [ctrl]

a1: cmp stat, #DMA DONE

a2: bne a0

a3: dsb /* rmb() */

a4: ldr data, [mem]

a0a3



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Which Barrier Should I Use?

Ignoring maintenance operations, memory barriers are typically
required when publishing to and consuming from other observers
(data vs control).

1. Do you even need a barrier? (dependencies)

2. Do you only care about ordering between CPUs? (smp *)

3. Only care about reads or writes? (*[rw]mb)

4. Low-level barriers rarely needed (nsh, osh and maintenance)

5. I/O accessors and relaxed variants (readl, writel)



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

Questions?



Introduction ARM’s memory model Linux’s memory model Finer-grained control Questions Future work

ARMv8

ARMv8 introduces some exciting new features to the memory
model!

-ld barrier option to order reads against reads/writes

Half barriers in the form of acquire/release operations

Device memory attributes nGnRnE

There’s also the problem of defining * relaxed across
architectures. . .


	Introduction
	ARM's memory model
	Linux's memory model
	Finer-grained control
	Questions
	Future work

