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Abstract

A (Blackwell) experiment specifies the joint distribution of truth and the data generated by the
experiment. A signal specifies the joint distribution of truth, the data generated by the signal,
and the data generated by any other signal. Describing two experiments does not determine
their joint informational content; describing two signals does. Blackwell (1953) studied (equiva-
lent) comparisons of experiments; he characterized when one experiment is more valuable than
another regardless of the preferences of the agent. We study (various, non-equivalent) compar-
isons of signals. Among other comparisons, we characterize when one signal is more valuable
than another regardless of the preferences of the agent and regardless of what other information
the agent may have. We show this comparison is equivalent to a new condition, termed reveal-
or-refine, which says that for every piece of data that could be generated by the more valuable
signal, either that data reveals the truth, or it refines the data generated by the less valuable
signal.
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1 Introduction

Economic theory has long been concerned with comparing the value of information sources. Black-

well (1953), for instance, gives conditions under which one source is more valuable than another

source, regardless of preferences. Most prior work, however, considers the value of an information

source in isolation, in absence of other – potentially correlated – information sources. Concretely,

suppose we wish to judge whether a subscription to the New York Times (NYT ) is more valuable

than a subscription to the Washington Post (WP),1 regardless of the reader’s interests. Blackwell’s

analysis tells us how to make this judgment, namely by comparing the distributions of beliefs in-

duced by reading the NYT vs. the WP. However, a conclusion based on this procedure might be

mistaken if the reader already has an existing subscription to a newspaper. Most obviously, if the

reader already subscribes to the NYT, a subscription to the WP is likely more valuable than a

duplicate subscription to the NYT. More subtly, a subscription to a third newspaper such as the

Wall Street Journal (WSJ ) might flip the comparison and make the WP more valuable than the

NYT, either because the WSJ and the NYT report similarly, or because the content of the WP

is somehow complementary to the WSJ. Could there be a way to establish that one newspaper is

more valuable than another, no matter what existing subscriptions the reader might have?

In this paper, we study the general version of this question. We derive comparisons of informa-

tion sources that are robust to the presence of other information.

Formally, Blackwell models an information source as an experiment : a collection of possible

outcomes and a conditional distribution of outcomes given the state. Blackwell’s foundational

result is that experiment A is more valuable than experiment B, regardless of the decision problem

(i.e., the agent’s action set and preferences over actions and states), if and only if the distribution

of beliefs induced by observing A is a mean-preserving spread of that induced by observing B.

Importantly, however, an experiment does not specify how observations from one information source

are correlated with observations from other sources. This suffices for Blackwell’s purpose, since he

implicitly assumes that the two experiments being compared are the only information sources

available to the agent.2

1Throughout this paper we focus on the instrumental value of information sources, ignoring the possibility that
reading a newspaper might also provide pure consumption value (Ely et al., 2015).

2Blackwell’s result extends to situations where there might be other sources of information but only if those sources
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In order to capture the joint informational content of multiple sources, we follow Green and

Stokey (1978) in modeling an information source as a signal : a partition of an expanded state

space Ω×X that distinguishes payoff-relevant states (Ω) from those that govern the realization of

observations conditional on the state (X). A signal induces an experiment, but it also pins down

its correlation with other signals. In particular, the information generated by observing signals A

and B is given by the join of the partitions, denoted A ∨B.

We say that signal A Blackwell dominates signal B if the experiment induced by A is more

valuable than an experiment induced by B, regardless of the decision problem.3 We then introduce

the strong Blackwell order, defined as follows: signal A strongly Blackwell dominates signal B if for

every signal C, A∨C Blackwell dominates B∨C. In other words, we extend Blackwell’s agnosticism

about the agent’s preferences to agnosticism about what other information the agent might have.

Our first theorem characterizes the strong Blackwell order. Say that signal A reveals-or-refines

signal B if every signal realization of A either (i) occurs in only one state (and thus “reveals” the

state), or (ii) is a subset of some signal realization of B (and thus “refines”B, pinning down what

information is observed by B).4 We show that A strongly Blackwell dominates B if and only if A

reveals-or-refines B.

Having established this result, we turn to comparisons of information sources distinct from

Blackwell. These additional comparisons can be put into two broad categories.

The first category includes comparisons that depend on the correlation across information

sources, and is thus natural given our shift in focus from experiments to signals. Say that sig-

nal A is sufficient for signal B if B does not contain additional information about the state beyond

that contained in A. Thus, for any agent with access to A, the marginal value of B is zero. For

another comparison, say that signal A martingale dominates signal B if an agent who forms some

posterior after observing B thinks that an agent who observes A will, in expectation, also hold that

posterior.5

are conditionally independent of the two experiments being compared. This reflects the fact that the Blackwell
comparison of experiments does not depend on prior beliefs.

3For most of our analysis, we treat the prior belief as fixed. As is well known, if one source of information Blackwell
dominates another for some (interior) prior, then it does so for all priors. We discuss this at greater length in Section
4.2.

4So, if Alice observes A and Bob observes B, either Alice’s first-order beliefs (about the state) or second-order
beliefs (about Bob’s beliefs) are degenerate.

5In Section 4.2, we discuss the sense in which martingale dominance captures a notion of being “more informative.”
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The second category consists of comparisons that weaken the Blackwell order and only require

that one information source be more valuable than another on some subset of decision problems.

An important example of such restricted Blackwell comparisons is the Lehmann (1988) order, which

is derived from the set of monotone decision problems.

Like Blackwell, each of the aforementioned comparisons (sufficiency, martingale, Lehmann)

implicitly presumes that the agent has no additional sources of information. Analogously to the

notion of strong Blackwell dominance, however, it is possible to strengthen any comparisons of

signals to reflect robustness to the presence of other information. Formally, given a relation P on

signals, let the strengthening of P, denoted P, be defined as APB if for any C, (A ∨ C)P (B ∨ C).

We first generalize our characterization of strong Blackwell dominance and establish that, as

long as the subset of decision problems is sufficiently rich,6 the strong version of the restricted

Blackwell comparisons is also equal to reveal-or-refine. In particular, the strong version of the

Lehmann order is equal to reveal-or-refine.

We also show that strong Blackwell implies sufficiency, which in turn implies martingale, which

in turn implies Blackwell. This fact, combined with some basic properties of strengthening (namely

monotonicity and idempotence), delivers the result that the strong versions of both sufficiency and

martingale are also equal to reveal-or-refine.

Broadly speaking, there are various relations on information sources. Our analysis highlights

sufficiency, martingale, Blackwell, and Lehmann. Even though these are all distinct, their strong

versions – which make the comparisons robust to additional information – coincide. The strong

versions of all of them are equal to reveal-or-refine.

Our paper is most closely related to the literature on ordinal comparisons of the ex-ante value

of information sources, starting with Blackwell (1951).7 Much of this research focuses on ways to

weaken the Blackwell order. Lehmann (1988), Persico (2000), and Athey and Levin (2018) consider

comparisons that apply to a subset of decision problems and/or a subset of experiments. Moscarini

and Smith (2002) and Mu et al. (2021b) compare the values of large numbers of independent draws

For some intuition, suppose that A reveals the state but B does not. It is then easy to see that A martingale dominates
B, but B does not martingale dominate A.

6In particular, we require that for any two states, the subset includes a decision problem under which it is valuable
to distinguish those two states.

7A smaller literature considers the ex-post value of information (Frankel and Kamenica (2019); Frankel and Kasy
(2022)).
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of different experiments.

Another closely related literature studies the joint informational content of multiple information

sources.8 Börgers et al. (2013) consider the question of when signals are complements or substitutes.

Gentzkow and Kamenica (2017a,b) consider the impact of competition when multiple senders pro-

vide potentially correlated signals in an attempt to influence a receiver. Liang and Mu (2020) and

Liang et al. (2022) consider acquisition of potentially complementary information sources. Brooks

et al. (2022) analyze the relationship between the comparison of information sources conceptualized

as experiments, according to the Blackwell order, and the comparison of information sources con-

ceptualized as signals, according to refinement, sufficiency, and martingale.9 Specifically, they ask

when a collection of Blackwell-ordered experiments can be induced by a collection of refinement-,

sufficiency-, or martingale-ordered signals.

2 Signals and experiments

There is a finite state space Ω and an interior prior µ0 ∈ ∆Ω. We denote a typical state by ω.

An experiment τ is a distribution of beliefs – i.e., an element of ∆∆Ω – that has finite support

and satisfies Eτ [µ] = µ0. (An alternative definition of an experiment is a map from Ω to distri-

butions over signal realizations, but as is common, we simply identify each experiment with the

distribution of beliefs it induces.) We write τ % τ ′ if τ is a mean-preserving spread of τ ′.

A signal π is a finite partition of Ω× [0, 1] s.t. π ⊂ S, where S is the set of non-empty Lebesgue-

measurable subsets of Ω× [0, 1] (Green and Stokey, 1978; Gentzkow and Kamenica, 2017a).10 An

element s ∈ S is a signal realization. The interpretation of this formalism is that a random variable

x, drawn uniformly from [0, 1], determines the signal realization conditional on the state. Thus, the

conditional probability of s given ω is pω(s) = λ ({x| (ω, x) ∈ s}) where λ (·) denotes the Lebesgue

8Just as additional sources of information can alter the value of a signal, additional sources of income can alter
the value of a monetary gamble. Mu et al. (2021a) explore how a decision maker’s preferences over monetary gambles
can depend on background risk, i.e., independent uncertainty over income.

9As we discuss in Section 4.2, the notion of martingale relation introduced in Brooks et al. (2022) is slightly
different from the one we study here.

10Green and Stokey (1978; 2022) introduce the notion of signals as partitions of an expanded state space. The
particular formalism we use here, and the accompanying graphical representation, was introduced by Gentzkow and
Kamenica (2017a). In Section 6, we discuss how our results can be presented using the language of type spaces
instead.
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measure. Observing signal realization s induces the posterior µs.
11

Given signal π, let s̃π be the associated S-valued random variable on Ω × [0, 1] induced by

π.12 Let µ̃π ≡ µs̃π denote the associated belief-valued random variable that reflects the posterior

induced by observing the realization from π. Finally, let 〈π〉 denote the distribution of µ̃π, i.e., the

experiment induced by signal π. If 〈π〉 = 〈π′〉, we say that π and π′ are Blackwell equivalent and

write π ∼ π′.

We denote the set of all signals by Π. We say π refines π′ and write πRπ′ if every element

of π is a subset of some element of π′.13 If πRπ′, an agent who observes π has access to all the

information available to an agent who observes π′. The relation R is a partial order on Π and poset

(Π,R) is a lattice. We let ∨ denote the join, i.e., π ∨ π′ is the coarsest refinement of both π and

π′. Observing both π and π′ results in the signal π ∨ π′.

Given two (binary) relations on signals, P and P ′, we denote that P implies P ′ (i.e., πPπ′ ⇒

πP ′π′) by P ⊆ P ′.14 If P implies P ′ but not vice versa, we have P ( P ′.

3 Strong Blackwell

3.1 Absence of other information

A decision problem D = (A, u) consists of a compact action set A and a continuous utility function

u : A×Ω→ R. The value of an experiment τ in problem D is given by Eµ̃∼τ [maxa∈A Eω∼µ̃u (a, ω)];

the value of signal π in problem D is the value of the induced experiment 〈π〉.15 Blackwell’s Theorem

(1953) establishes that τ is more valuable than τ ′ for every decision problem if and only if τ % τ ′.

We are primarily interested in studying comparisons of signals, rather than experiments. We

say that signal π Blackwell dominates signal π′ and write πBπ′ if π has a weakly higher value than

π′ for every D. Hence, πBπ′ if and only if 〈π〉 % 〈π′〉.
11The posterior probability of ω given s is µωs ≡

pω(s)µω
0∑

ω′∈Ω p
ω′

(s)µω′
0

as long as the unconditional probability of s,∑
ω′∈Ω p

ω′
(s)µω

′
0 , is strictly positive. The specification of µs when s has zero probability is irrelevant for our results.

12Recall that an S-valued random variable on Ω × [0, 1] is simply a function from Ω × [0, 1] to S; s̃π maps each
(ω, x) to the signal realization s ∈ S that contains (ω, x) in partition π.

13We then also say π′ coarsens π.
14Recall that a binary relation on Π is a subset of Π×Π, with πPπ′ denoting that (π, π′) ∈ P ⊆ Π×Π.
15One can of course subtract the payoff under the prior from the definition of this value, but since that is constant

it would not change any comparisons of experiments.
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Note that B is a relation on signals, but it is not a partial order. While it is reflexive and

transitive, and therefore a preorder, it is not antisymmetric: πBπ′ and π′Bπ implies that the

two signals are Blackwell equivalent (π ∼ π′) but does not imply that they are the same signal

(π = π′).16 As we will see down the line, some economically meaningful relations on signals will

not be transitive, so will not even be preorders.

3.2 Robustness to additional information

In the previous subsection, the analyst who compares the value of two signals is completely agnostic

about the preferences of the agent but is implicitly dogmatic in the view that the signals whose value

is being considered will be the only information available to the agent. We now extend agnosticism

about preferences to agnosticism about what other information the agent observes.

An extended decision problem D̂ = (A, u, π̂) consists of a compact action set A, a continuous

utility function u : A × Ω → R, and a signal π̂. The interpretation is that we are considering an

agent with action set A and utility function u who has observed signal π̂.

The value of a signal π in extended problem D̂ is given by Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)]. We

say that signal π strongly Blackwell dominates signal π′, denoted πBπ′, if π has a higher value than

π′ for every extended decision problem D̂.17 We now describe some key properties of the strong

Blackwell relation.

Remark 3.1. Strong Blackwell dominance implies but is not equivalent to Blackwell dominance,

i.e., B ( B. The fact that B ⊆ B follows from the observation that every extended decision problem

is also a decision problem – we simply set π̂ to be the trivial partition π.18 To see that B 6= B,

consider the three signals in Figure 1. It is easy to see that πBπ′ since π is informative about the

state and π′ is not. But, it is not the case that πBπ′ since π ∨ π̂ is only partially informative about

the state while π′ ∨ π̂ fully reveals the state.

Remark 3.2. There are two other natural ways we could ask whether the comparison of two signals

is influenced by the presence of additional information. First, we could ask whether π is neces-

16The Blackwell order on experiments – that is, the mean-preserving spread order – is of course a partial order.
17It is possible to formulate the Blackwell order on experiments without a reference to utility functions: experiment

τ Blackwell dominates τ ′ if the set of feasible joint distributions of actions and states under τ is a superset of that under
τ ′. We could similarly formulate the notion of strong Blackwell dominance in terms of feasible joint distributions;
our results would remain unchanged.

18The trivial partition is the one that contains a single signal realization, i.e., π = {Ω× [0, 1]}.

7



Figure 1: Blackwell vs. Strong Blackwell

ω = L ω = R

π a b ab

π′ c d cd

π̂ e f e f

It holds that πBπ′, but not that πBπ′ because π∨ π̂ does not Blackwell dominate π′∨ π̂;

in fact, π′ ∨ π̂ fully reveals the state but π ∨ π̂ does not.

sarily more valuable than π′ if the agent had observed a given signal realization. This would be

an interim notion of more valuable, in contrast to the ex ante notion that is embodied in our

definition of strong Blackwell. Formally, we could require that Eµ̃∼〈π|s〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥

Eµ̃∼〈π′|s〉 [maxa∈A Eω∼µ̃u (a, ω)] for any triplet (A, u, s), where 〈π|s〉 denotes the distribution of pos-

teriors induced by observing signal π after having previously observed signal realization s.

Second, we could consider the possibility that the agent, after obtaining a signal whose value we

are interested in, could endogenously acquire additional costly information. Formally, we could re-

quire that supπ̂∈Π Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)]−c (π̂) ≥ supπ̂∈Π Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)]−

c (π̂) for any triplet (A, u, c), where c : Π→ R+ denotes the cost of acquiring additional information.

It turns out, however, that both of these alternative notions are equivalent to our definition of

strong Blackwell dominance! We formalize and prove this claim in Appendix A.1.

Remark 3.3. Strong Blackwell dominance is transitive since Blackwell dominance is.

Our main result for this section is a characterization of strong Blackwell. This characterization

can be motivated by considering two sufficient conditions for strong Blackwell.

First, it is immediate that refinement implies strong Blackwell: πRπ′ implies that 〈π ∨ π̂〉 %

〈π′∨ π̂〉 for any π̂. Second, consider any signal π that always reveals the state. It is immediate that

πBπ′ for every π′: for any π̂, the join π ∨ π̂ also always reveals the state, and therefore Blackwell

dominates any other signal, including π′ ∨ π̂.

Of course, neither of these sufficient conditions is necessary. Indeed, π′ is strongly Blackwell

dominated by any refinement of π′, even if that refinement does not reveal the state, and π′ is

strongly Blackwell dominated by any signal that always reveals the state, even if that signal does

not refine π′. Moreover, it might be that πBπ′ even though π neither refines π′ nor always reveals the
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state. The key insight is that if we consider elements of π one signal realization at a time, if it turns

out that every signal realization of π either pins down the state or pins down the signal realization

generated by π′ (or both), then π must be more valuable than π′ no matter what other information

is available. Moreover, this condition is not merely sufficient for πBπ′, it is also necessary.

Formally, say that π reveals-or-refines π′, denoted πOπ′, if for every s ∈ π either: (i) s reveals

the state (i.e., p (s|ω) > 0 for at most one ω), or (ii) s ⊆ s′ for some s′ ∈ π′. See Figure 2 for an

illustration. We then have the following characterization.

Figure 2: Reveal-or-refine

ω = L ω = R

π g h i ji

π′ k l kl

Signal π reveals-or-refines π′, but it is not the case that π refines π′ or that π always

reveals the state.

Theorem 1. Signal π strongly Blackwell dominates signal π′ if and only if π reveals-or-refines π′.

That is, B = O.

Proof. To see why reveal-or-refine implies strong Blackwell, first fix any extended decision problem.

In order to show that π is more valuable than π′, it suffices to show that π is more valuable than π′

conditional on any signal realization s from π. If s reveals the state, nothing can be more valuable

than π. If s refines s′ ∈ π′, i.e., s ⊆ s′, then for any signal realization ŝ ∈ π̂, s∩ ŝ ⊆ s′ ∩ ŝ, and thus

π is more valuable than π′.

For the converse, suppose π does not reveal-or-refine π′. We can then find signal realizations s

in π and s′1 6= s′2 in π′ along with states ω1 6= ω2 such that s ∩ s′1 occurs with positive probability

in ω1 while s ∩ s′2 occurs with positive probability in ω2. Let E be the event that either ω = ω1

and (ω, x) ∈ s ∩ s′1, or ω = ω2 and (ω, x) ∈ s ∩ s′2. Finally, let π̂ be the join of π and a signal that

reveals whether event E occurs. (See Figure 3 for an illustration.) Then π ∨ π̂ = π̂, while π′ ∨ π̂

is strictly more informative than π̂. In particular, in event E, signal π̂ reveals only that event E

has occurred, whereas π′ ∨ π̂ additionally reveals whether the state is ω1 (realization s′1 ∩E) or ω2

(realization s′2 ∩ E).
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Figure 3: Construction of π̂ in the proof of Theorem 1

ω1 ω2

π s s : π outside s

π′ s1' s2's1' : π ' outside s1', s2'

π̂ E Es∖E

Event E is the union of s∩s′1 in state ω1 and s∩s′2 in state ω2. Signal π̂ is then defined

as π ∨ {E,Ec}.

The argument above establishes a result that is somewhat stronger than Theorem 1. It shows

that if π does not reveal-or-refine π′, then there is a π̂ such that π′∨ π̂ strictly Blackwell dominates

π ∨ π̂. It is not merely that π ∨ π̂ is not comparable to π′ ∨ π̂.

Moreover, as we discuss in Section 5, a similar argument can be used to provide a generalization

of Theorem 1 that characterizes how to strengthen some relations on signals other than Blackwell.

A key qualitative insight from Theorem 1 is that even though the definition of strong Blackwell

involves a universal quantification over all decision problems and all signals, the universal quantifier

can in fact be eliminated, and strong Blackwell is reduced to the much simpler reveal-or-refine com-

parison, which only requires checking a condition for each of the (finitely many) signal realizations.

Indeed, using a graphical representation of signals, it is straightforward to check whether one signal

reveals-or-refines another via “visual inspection.” For example, to compare π and π′ in Figure 2, we

consider each signal realization of π in turn. Realization g ∈ π both reveals the state and refines

realization k ∈ π′ (i.e., g ⊆ k); realization h reveals the state; realization i refines l; finally, j reveals

the state. Thus, π reveals-or-refines π′.

4 Beyond Blackwell

In this section, we discuss other economically meaningful ways to compare signals. We first intro-

duce two additional comparisons that require the shift in focus from experiments to signals since

they concern the joint informational content of multiple sources of information. These two com-

parisons, sufficiency and martingale, turn out to be more demanding than Blackwell. Then, we

consider comparisons that weaken the Blackwell order by requiring that a signal be more valuable
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than another only on some subset of decision problems. Examples include the Lehmann (1988) or-

der and comparisons based on a single, specific decision problem. This section will set the stage for

Section 5 where we will strengthen each of these comparisons to make them robust to the potential

presence of other information, as we did previously for the Blackwell order.

4.1 Sufficiency

The Blackwell order is concerned with whether one source of information (e.g., NYT ) is more valu-

able than another (e.g., WP). Another meaningful question is when one source of information might

make another source of information moot. For example, how could we tell whether a subscription

to some newspaper is worthless given an agent’s existing subscriptions?

Formally, we say that π is sufficient for π′, denoted πSπ′, if in any decision problem the value

of signal π ∨ π′ is the same as value of signal π.19

This notion of sufficiency appears in various economic applications. For instance, Holmström

(1979) shows that information about an agent’s effort in a moral hazard problem is valuable if and

only if the observable output is not sufficient for that information.

Remark 4.1. Signal π is sufficient for signal π′ if and only if (π ∨ π′) ∼ π. If (π ∨ π′) ∼ π , then

the value of π ∨π′ is the same as value of π for any decision problem, so πSπ′. Conversely, if πSπ′,

then the fact that π alone yields as much value as π ∨ π′ implies that πB (π ∨ π′). Since we know

(π ∨ π′)Bπ, we have that (π ∨ π′) ∼ π.

Yet another equivalent formulation of sufficiency is in terms of the induced random variables:

πSπ′ ⇔ µ̃π∨π′ = µ̃π. In general, µ̃π = µ̃π′ ⇒ π∼ π′ but π ∼ π′ 6⇒ µ̃π = µ̃π′ . That said, we do have

that πSπ′ ⇔ π ∨ π′ ∼ π ⇔ µ̃π∨π′ = µ̃π. This equivalence follows from the more general result that

if π∗ refines π and π∗ ∼ π, then µ̃π∗ = µ̃π.

The formulation of sufficiency in terms of random variables provides a simple way to check

whether one signal is sufficient for another. To compare π and π′ in Figure 4, we consider each

signal realization of π ∨ π′ in turn. Realization g = k ∩ g ∈ π ∨ π′ clearly leads to the same belief

19Alonso and Câmara (2018) and Brooks et al. (2022) use the terminology that π′ is (statistically) redundant given
π when π is sufficient for π′.
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Figure 4: Checking for sufficiency

ω = L ω = R

π ∨ π′ k⋂g=g k⋂m l⋂m l⋂n=n l⋂m k⋂m

π g m n m

π′ k l kl

One can confirm that πSπ′ by comparing the likelihood ratios of each signal realization

in π to the likelihood ratios of the overlapping signal realizations in π ∨ π′.

as g ∈ π; realization k ∩m ∈ π ∨ π′ leads to the same belief as m ∈ π since

Pr (k ∩m|ω = L)

Pr (k ∩m|ω = R)
=
Pr (m|ω = L)

Pr (m|ω = R)
.

The same is true for l ∩m and m, and hence πSπ′.

Remark 4.2. Another equivalent definition of sufficiency is: for all s ∈ π and all s′ ∈ π′, Pr (s′|s, ω)

is independent of ω. This formulation echoes Blackwell’s (1953) notion of a garbling.20 But unlike

Blackwell, we have specified the underlying probability space, so we are not asking whether there

exists a garbling that transforms experiment 〈π〉 into 〈π′〉. Rather, we ask whether – given their

underlying correlation – the signal π′ adds information about the state given signal π. Relatedly, it

is worth noting that the following three conditions are equivalent: (i) πBπ′, (ii) ∃π∗ s.t. π ∼ π∗ and

π∗Rπ′, and (iii) ∃π∗ s.t. π ∼ π∗ and π∗Sπ′. The equivalence of (i) and (ii) is Theorem 1 in Green

and Stokey (1978).21 The equivalence of (i) and (iii) is closely related to a standard formulation of

Blackwell’s theorem.

Remark 4.3. B ( S ( B.

First, it is easy to see that B ⊆ S. If πBπ′, we know (π ∨ π̂)B (π′ ∨ π̂) for any π̂, including

π̂ = π; hence, πB (π ∨ π′). Since it’s always the case that (π ∨ π′)Bπ, we have π ∼ (π ∨ π′). Hence,

πBπ′ implies πSπ′.

Importantly, however, B 6= S. This can be seen in Figure 6 where πSSπ0 but ¬
(
πSBπ0

)
. The

fact that B 6= S has a substantive economic interpretation. Suppose we know that πBπ′ but are

20This formulation also clarifies the relationship between our definition of sufficiency and the notion of a sufficient
statistic in the field of statistics. Given some data ~x, recall that a function t (~x) is a sufficient statistic for ω if
Pr (~x|t (~x) , ω) is independent of ω.

21It is stated and proved using the formalism in our paper by Gentzkow and Kamenica (2017a).
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Figure 5: Sufficiency is not transitive

ω = L ω = R
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It holds that πaSπb and πbSπc but not that πaSπc.

not sure whether π remains more valuable than π′ in the presence of some additional information

π̂. One might think that the “worst case” scenario would be if π̂ = π (e.g., in comparing the value

of NYT to the value of WP, we worry that the reader already has a subscription to the NYT ). This

scenario, however, only tells us, however, whether πSπ′, which is a weaker condition than πBπ′.

Thus, π̂ = π is not the most stringent test-case for strong Blackwell dominance. Instead, a more

consequential case is when π̂ is complementary to π′.

It is also easy to see that S ⊆ B since πSπ′ means the value of π in any decision problem is the

same as the value of π ∨ π′, which in turn must be weakly higher than the value of π′. Moreover,

Figure 6 establishes that S 6= B since πBBπ0 but ¬ (πBSπ0).

Remark 4.4. Sufficiency is not transitive. Consider Figure 5. Since πa ∨ πb = πa, πa is a fortiori

sufficient for πb. Since both πb and πb ∨ πc provide no information about the state, we have that

πb is sufficient for πc. Yet, πa is not sufficient for πc; πa on its own provides no information about

the state while πa ∨ πc fully reveals the state.

4.2 Martingale

A widely used and basic observation in information economics is that “beliefs are a martingale.” If

an agent with some current belief µ0 observes additional data from some source of information, their

expected posterior belief must be µ0. This is a consequence of the Law of Iterated Expectations.

In the context of signals, one way to formulate this observation is to note that if π refines π′,

then it must be the case that E [µ̃π|s̃π′ ] = µ̃π′ . In other words, additional information cannot change

beliefs on average.

In this paper, we take a novel perspective on the martingale property. Instead of treating it as

13



an implication of Bayesian updating, we consider it as a relation between sources of information.

When is it the case that, if I read the Washington Post, I think that in expectation, a reader of

the New York Times would hold the same belief that I do? If WP were much more informative

than NYT, there would be no reason to think this: a reader of WP might know the state of the

world and yet expect the reader of NYT to remain uninformed. By contrast, if NYT contains all

the information that WP does, then the WP reader would in fact think that the expected belief

of the NYT reader is equal to their own. Thus, the martingale property (E [µ̃π|s̃π′ ] = µ̃π′) tells us

that π is in some sense “more informative” than π′. In this section, we unpack what that means.

To formally define the martingale relation, we need to address a subtlety that was absent from

the considerations of the Blackwell and sufficiency relations. We fixed an interior prior µ0 at the

outset, but as is well known, the Blackwell comparison is prior independent, so by extension the

sufficiency comparison is as well. In other words, whether πBπ′ or whether πSπ′ does not depend

on µ0.

By contrast, for a given π and π′, whether E [µ̃π|s̃π′ ] = µ̃π′ can depend on µ0. (An example of

this is given in Appendix A.3.)

Accordingly, we say π martingale dominates π′, denoted πMπ′, if E [µ̃π|s̃π′ ] = µ̃π′ holds for any

choice of µ0.

Remark 4.5. In prior work (Brooks et al., 2022), we introduced a similar relation, termed belief-

martingale, defined by E [µ̃π|µ̃π′ ] = µ̃π′ . To understand the distinction between the two relations,

it is helpful to introduce the idea of the belief-coarsening of a signal. Given any signal π, we let

the belief-coarsening of π, denoted C (π), be the signal that “pools together” any signal realizations

in π that induce the same belief. Formally, C (π) is the finest coarsening of π such that for any

s, s′ ∈ C (π), s 6= s′ ⇒ µs 6= µs′ . With this definition in hand, we have that π belief-martingale

dominates π′ if and only if π martingale dominates C (π′).22 Moreover, πMπ′ implies that π

belief-martingale dominates π′.

Remark 4.6. The notion of belief-coarsening also provides another way to characterize the martin-

22For another illustration of belief-coarsening, if π refines C (π′), that means that an agent who observes π knows
the first-order beliefs of an agent who observes π′. In Brooks et al. (2022), we discuss such “knowledge of first-
order beliefs” as an example of a proper relation on signals, i.e., a relation that is implied by refinement and implies
belief-martingale.
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gale relation. In particular, it turns out that πMπ′ if and only if C (π)Sπ′. It is easy to see that

C (π)Sπ′ implies πMπ′ because C (π)Sπ′ implies C (π)Mπ′ (because S ⊆ M) and C (π)Mπ′

implies πMπ′ (because µ̃C(π) = µ̃π). The other direction is more subtle, and we provide a detailed

argument in Appendix A.2. The equivalence of πMπ′ with C(π)Sπ′ is illustrated in Figure 6 in

Section 5, taking π = πM and π′ = π0: πM martingale dominates π0 and πM is not sufficient for

π0, but C(πM) is sufficient for π0. More generally, the fact that πMπ′ ⇔ C (π)Sπ′ provides a

simple way to check whether one signal martingale dominates another.

Remark 4.7. S ( M ( B. To see that S ⊆ M, suppose πSπ′. Since R ⊆ M, we know that

(π ∨ π′)Mπ′, i.e., E [µ̃π∨π′ |s̃π′ ] = µ̃π′ , which in turn implies E [µ̃π|s̃π′ ] = µ̃π′ since µ̃π∨π′ = µ̃π.

Thus πMπ′. To see thatM⊆ B, note that E [µ̃π|s̃π′ ] = µ̃π′ implies that the distribution of µ̃π is a

mean-preserving spread of the distribution of µ̃π′ . Another way to see that S ⊆ M ⊆ B is to note

the following analogous characterizations of these three relations (as shown in Appendix A.4).

• πSπ′ if and only if ∃π∗ s.t. C (π∗) = C (π), π∗Rπ, and π∗Rπ′. (We can take π∗ = π ∨ π′.)

• πMπ′ if and only if ∃π∗ s.t. C (π∗) = C (π) and π∗Rπ′.

• πBπ′ if and only if ∃π∗ s.t. π∗ ∼ π and π∗Rπ′ (as noted in Remark 4.2).23

To see that S 6= M 6= B, see Figure 6 in Section 5. In the figure, we see that πMMπ0 but

¬ (πMSπ0), and that πBBπ0 but ¬ (πBMπ0).

Remark 4.8. The martingale relation is not transitive. See example in Figure 8 in Appendix A.5.

4.3 Restricted Blackwell

All of the comparisons we have introduced thus far (Strong Blackwell, sufficiency, martingale)

are more restrictive than the Blackwell comparison. Yet, many have argued that the Blackwell

comparison itself is already excessively restrictive (Lehmann, 1988; Moscarini and Smith, 2002).

One approach to weakening the Blackwell comparison has been to consider a restricted class of

decision problems (e.g., supermodular payoffs), often for a restricted class of experiments (e.g., those

that satisfy the monotone likelihood ratio property). This approach was pioneered by Lehmann

23Since C (π∗) = C (π) implies that π∗ ∼ π, these characterizations make it clear that M⊆ B.
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(1988) and further developed by Persico (2000), Quah and Strulovici (2009), Cabrales et al. (2013),

and Athey and Levin (2018). In this section, we consider comparisons of signals over restricted

domains of decision problems.

Consider some class of decision problems D. We say that signal π is more valuable for D than

π′, denoted πVDπ′, if π has a weakly higher value than π′ for every D ∈ D. We refer to these as

restricted Blackwell relations. If D is the class of all decision problems, then VD is the Blackwell

relation B.

Suppose that the set of states Ω is ordered and D consists of decision problems (A, u) that are

monotone in the sense that: (i) A is ordered, (ii) a∗ (ω) ≡ arg maxa∈A u (a, ω) is single-valued and

non-decreasing in ω, and (iii) a ≥ a ≥ a∗ (ω) ≥ a ≥ a implies u
(
a, ω

)
≤ u (a, ω) and u

(
a, ω

)
≤

u (a, ω). Lehmann (1988) studies the value of experiments for problems in this domain. Accordingly,

we denote VD for this domain by L.24

We could also consider a case where D is a singleton, containing only some specific decision

problem D. In that case, VD is complete: for any two signals π and π′, we have πVDπ′ or π′VDπ.25

While VD is well-defined for any domain D, we will be particularly interested in domains that

are sufficiently rich, in the following sense. We say that D is discriminating if for any distinct

ω, ω′ ∈ Ω, there exists (A, u) ∈ D such that arg max a∈Au (a, ω) and arg max a∈Au (a, ω′) do not

intersect. In other words, for any pair of states, there is a decision problem in D that benefits

from distinguishing those two states. In particular, the domains that induce the Blackwell and the

Lehmann relations are discriminating.

Our goal in this paper is not to characterize VD for various domains D. Instead, we will present

a general result about how to strengthen VD (for any discriminating D) to make it robust to the

potential presence of other information.

24Lehmann’s (1988) main result considers two signals πa and πb that satisfy the monotone likelihood ratio in s for
some total order on S. For this case, Lehmann proves that πaLπb if and only if (Fπa

ω )−1 (F
πb
ω (s)) is a non-decreasing

function of ω for each s, where Fπω (s) is the probability that π yields a realization lower than s in ω. Many authors
take this quantile condition to be the definition of the Lehmann order. In contrast, we define L solely in terms of the
restriction on the set of (A, u) pairs being considered.

25Recall that we are considering a fixed prior on Ω; hence the value of each signal for D is simply a number.
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5 Generalized strengthening

We now formalize how to strengthen an arbitrary relation to make it robust to the presence of

additional information. Given a relation P on Π, let strong P, denoted P, be defined by πPπ′ if

(π ∨ π̂)P (π′ ∨ π̂) for all π̂ ∈ Π.

We have already seen one important case of the strong version of a relation, the strong Blackwell

order B. In fact, the proof of Theorem 1 can easily be extended to establish a more general result:

Theorem 1′. Suppose that D is discriminating. Then, πVDπ′ if and only if π reveals-or-refines π′.

In particular, L = O.

Proof. Theorem 1 establishes that when π reveals-or-refines π′, π is more valuable than π′ for any

extended decision problem (A, u, π̂). A fortiori, π is more valuable than π′ for any (A, u, π̂) such

that (A, u) ∈ D. Therefore, π reveals-or-refines π′ implies πVDπ′ for any D.

Now suppose that D is discriminating. We wish to show πVDπ′ implies π reveals-or-refines π′.

Consider signals π and π′ such that π does not reveal-or-refine π′. In the proof of Theorem 1, we

observed that this implies that there are distinct states ω1 and ω2, an event E, and a signal π̂ such

that: (i) π ∨ π̂ = π̂ and (ii) π′ ∨ π̂ reveals π̂ and, in event E, also reveals whether the state is ω1

or ω2. Because D is discriminating, there is a decision problem (A, u) ∈ D such that it is strictly

valuable to distinguish ω1 and ω2, implying that π ∨ π̂ is less valuable than π′ ∨ π̂ for a decision

problem in D. Therefore, it is not the case that πVDπ′.

Remark 5.1. The assumption that D is discriminating is necessary for Theorem 1′. In Appendix

A.6, we show that for any non-discriminating D, we have VD 6= O. Thus, D is discriminating if and

only if VD = O.

We now establish some basic facts about strengthening that apply no matter what relation is

being strengthened.

(i) Strengthening strengthens: for any P, we have P ⊆ P. Proof: If (π ∨ π̂)P (π′ ∨ π̂) for all π̂,

then π = (π ∨ π)P (π′ ∨ π) = π′.

(ii) Strengthening is idempotent: for any P, P = P. Proof: From (i), P ⊆ P. To show P ⊆

P, suppose πPπ′, i.e., (π ∨ π̂)P (π′ ∨ π̂) for all π̂ ∈ Π. Then, for any π̂, π̃ ∈ Π, we have
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(π ∨ π̂ ∨ π̃)P (π′ ∨ π̂ ∨ π̃) since π̂ ∨ π̃ ∈ Π.

(iii) Strengthening is monotone: if P ⊆ P ′, then P ⊆ P ′. Proof: Suppose P ⊆ P ′ and πPπ′. For

any π̂, we have that (π ∨ π̂)P (π′ ∨ π̂), which in turn implies (π ∨ π̂)P ′ (π′ ∨ π̂). Since this

holds for all π̂, we have that πP ′π′.

The latter two properties yield a simple Lemma that will turn out to be very useful.26

Lemma 1. Suppose P and Q are two relations on signals such that Q ⊆ P ⊆ Q. Then, P = Q.

Proof. Q ⊆ P implies Q ⊆ P (by monotonicity), which in turn implies Q ⊆ P (by idempotency).

P ⊆ Q implies P ⊆ Q (by monotonicity). Hence, P = Q.

With this Lemma in hand, it turns out to be very easy to characterize the strong versions of a

large class of relations on signals.

Theorem 2. Suppose P is a relation on signals and O ⊆ P ⊆ VD for some discriminating D.

Then, πPπ′ if and only if π reveals-or-refines π′. In particular, S =M = O.

Proof. This follows from Theorem 1′ and Lemma 1, coupled with the fact that, if D is discriminating,

O = B ⊆ S ⊆M ⊆ B ⊆ VD.

Putting together our results we have:

Corollary 1. S =M = B = L = O.

There are various ways to compare the usefulness of a source of information – sufficiency,

martingale, Blackwell, Lehmann. For any of these comparisons, we may wish to consider the strong

version of the comparison that is robust to the potential presence of additional information. Our

results deliver a remarkable message, namely that, even though sufficiency, martingale, Blackwell,

and Lehmann are all distinct, their strong versions coincide! Moreover, the strong version of each

of these comparisons is a simple relation, reveal-or-refine, which is very easy to check and involves

no quantifiers over decision problems or signals.

26These two properties also appear in the notion of a closure operator in set theory. A function cl that maps sets
to sets is a closure operator if for any two sets X and Y , we have: (i) X ⊆ cl (X), (ii) cl (cl (X)) = cl (X), and (iii)
X ⊆ Y ⇒ cl (X) ⊆ cl (Y ). Property (i) is the “reverse” of property (i) in the remark above. Properties (ii) and (iii)
are exactly idempotence and monotonicity. Consequently, an analogue of the Lemma below applies to any closure
operator: if cl is a closure operator, then for any two sets X and Y , X ⊆ Y ⊆ cl (X) implies cl (X) = cl (Y ).
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Figure 6: Ranking the relations
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This figure illustrates the ranking of the relations R ( O ( S ( M ( B,
where for each relation P, we have πPPπ0. To confirm the strictness of this
ranking, we see that πOOπ0 but ¬ (πORπ0); πSSπ0 but ¬ (πSOπ0); πMMπ0

but ¬ (πMSπ0); and πBBπ0 but ¬ (πBMπ0). The fact that ¬ (πBMπ0) follows
from the fact that C (πB) = πB is not sufficient for π0.

One relation that we have discussed but is not covered by the theorems in this section is

refinement. Refinement is more demanding than reveal-or-refine (R ( O). In fact, it is easy to see

that refinement is unaffected by strengthening (R = R): if π refines π′ then π ∨ π̂ refines π′ ∨ π̂ for

any π̂.

Summarizing the relations that we have considered, we can order them as follows:

R = R ( S =M = B = L = O ( S (M ( B ( L.

Figure 6 illustrates the strict comparisons, providing examples where signals are ranked by reveal-

or-refine but not refinement; sufficiency but not reveal-or-refine; martingale but not sufficiency; and

Blackwell but not martingale.27

6 Reformulation in terms of type spaces

Signals, i.e., partitions of Ω × [0, 1], are not the only (nor the most common) way of encoding

correlations between information sources. A type space (T , Q) consists of a finite product set

T = T1 × · · · × Tn, and a probability distribution Q ∈ ∆ (Ω× T ) for which the marginal of Q

27In general, B ( L, but in the case of binary states, B = L. Consequently, we do not include comparisons with L
in the figure.
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on Ω is µ0. The observation of type ti ∈ Ti pins down an experiment. The full distribution

Q, moreover, specifies the overall correlation of types and thus the joint informational content of

observing multiple types. Consequently, we could have formulated both our questions and our

answers in terms of type space.28

Specifically, consider some type space (T1 × T2, Q). We say that (T1 × T2 × T3, Q
′) extends

(T1 × T2, Q) if the probability of any (ω, t1, t2) is the same under Q and Q′. We would then say

that t1 Blackwell dominates t2 if observing t1 is more valuable than observing t2 in any decision

problem. Moreover, t1 strongly Blackwell dominates t2 if for every extension (T1 × T2 × T3, Q
′),

observing (t1, t3) is more valuable than observing (t2, t3) in any decision problem. The analogue of

our Theorem 1 is that under (T1 × T2, Q), t1 strongly Blackwell dominates t2 if and only if for every

t1 ∈ T1, either: (i) there is at most one ω such that the probability of (t1, ω) under Q is strictly

positive, or (ii) there is at most one t2 such that the probability of (t1, t2) under Q is strictly

positive. Similarly, analogues of the notions of sufficiency and martingale, and of Theorem 2 can

be presented within the type space formalism.

We personally find that the formalism in terms of signals is notationally less cumbersome.

Moreover, we consider it helpful to define the underlying probability space at the outset, so that

each source of information (i.e., a signal) can be fully specified without any explicit reference to

other sources in information. As the paragraph above makes clear, this is not possible within the

type space formalism.

One might worry, however, that the signal formalism requires unrealistic levels of information

about how some particular information source, such as the NYT, fits into the Ω× [0, 1] state space.

This is not a concern if we interpret the unit interval not as some true, physical dimension of the

state space, but rather as a modeling device. Under the modeling device interpretation, however,

two issues arise. First, can every type space be represented through signals? Second, even if so, it

may be that the appropriate encoding of one information source as a signal may depend on what

other information sources will be considered. For example, suppose we have data on the experiment

induced by reading the NYT. We choose some arbitrary encoding of the NYT as a signal, matching

the conditional probability of each NYT realization in each state. We then learn we also have to

28We thank Dirk Bergemann and Stephen Morris for encouraging us to make this connection.
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encode the WSJ, capturing the correlation of the WSJ with the state and with the NYT. Might

it be that we now have to reconsider our encoding of the NYT in order to allow for consistency

with the WSJ ?29 In Brooks et al. (2024), we show that these concerns are unwarranted. Any type

space can be represented as a collection of signals and the encoding of type spaces into signals can

be done myopically, one information source at a time.

7 Conclusion

Experiments have long been considered the natural formalism for modeling information sources.

As we and others have argued, this formalism is incomplete, in that the definition of different

experiments does not specify how they interact with one another. In contrast, we model information

sources as signals, which provide a complete description of the joint distribution of data from one

information source and all others.

With this shift in focus from experiments to signals, a number of natural questions emerge. In

Brooks et al. (2022), we investigate the conditions under which a partial order on the information

content of experiments can be made consistent with an analogous ordering on signals. In the present

paper, we compare the value of signals with a focus on the robustness to potential presence of other

information. We also argue for the study of relations on signals beyond the familiar Blackwell

and refinement orders, including sufficiency and martingale. But many questions remain. What

other relations on signals may be useful and/or meaningful in economic applications? What are

the decision- or game-theoretic foundations for the different relations? (Sufficiency, for example,

has a simple characterization that one signal not add value to another in any decision problem;

refinement may be relevant in games, when a player cares not only about the underlying state but

also about what other players know; we do not know of natural foundations for the martingale

relation.) What are economically reasonable ways to model the cost of acquiring signals? We leave

these issues for future work.

29We thank Ian Ball for raising this question.
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A Appendix

A.1 Alternative formulations of strong Blackwell dominance

An interim decision problem D̂i = (A, u, s) consists of a compact action set A, a continuous utility

function u : A×Ω→ R, and a signal realization s ∈ S. The interpretation is that we are considering

an agent with action set A and utility function u who has observed signal realization s. Let 〈π|s〉

denote the distribution of posteriors induced by observing signal π after having previously observed

signal realization s: letting Pr (ŝ) ≡
∑

ω∈Ω p
ω(ŝ)µω0 denote the unconditional probability of realiza-

tion ŝ for any ŝ ∈ S, distribution 〈π|s〉 assigns probability
∑
{s′∈π:µs∩s′=µ}

Pr(s∩s′)
Pr(s) to each belief µ.

The value of a signal π in an interim decision problem D̂i is given by Eµ̃∼〈π|s〉 [maxa∈A Eω∼µ̃u (a, ω)].

We say π strongly Blackwell dominates π′ in the interim sense and write πBiπ′ if π has a higher

value than π′ for every D̂i.

A costly acquisition decision problem D̂k = (A, u, c) consists of a compact action set A, a

continuous utility function u : A × Ω → R, and a cost function c : Π → R+ with c(π) = 0. The

interpretation is that we are considering an agent with action set A and utility function u who can,

in addition to the signal whose value we are considering, acquire any additional signal π̂ at cost

c (π̂).30 The value of signal π in a costly acquisition decision problem is

sup
π̂∈Π

Eµ̃∼〈π∨π̂〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
− c (π̂) .

We say π strongly Blackwell dominates π′ under costly information acquisition and write πBkπ′ if

π has a higher value than π′ for every D̂k.

These two alternative notions are equivalent to strong Blackwell:

Proposition 1. B = Bi = Bk.

Proof. We first show that B = Bi. Suppose πBπ′. Consider some interim decision problem

(A, u, s). Let π̂ be a signal that consists of s and, for each state, a signal realization (disjoint

with s) that reveals that state, i.e., π̂ = {s} ∪ {({ω} × [0, 1]) \ s|ω ∈ Ω} . Since πBπ′, we know

30We could also consider the possibility that the agent chooses what additional costly information to acquire only
after they observe the realization of the signal whose value we are considering. Once again, this notion would be
equivalent to the strong Blackwell order.
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Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥ Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] , i.e.,

∑
ŝ∈π̂

Pr (ŝ)Eµ̃∼〈π|ŝ〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
≥
∑
ŝ∈π̂

Pr (ŝ)Eµ̃∼〈π′|ŝ〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
.

For any ŝ ∈ π̂ with ŝ 6= s, we have Eµ̃∼〈π|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)] = Eµ̃∼〈π′|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)]

since ŝ fully reveals the state. Thus, we must have

Eµ̃∼〈π|s〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
≥ Eµ̃∼〈π′|s〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
.

Since the choice of (A, u, s) was arbitrary, we conclude πBiπ′. Thus, B ⊆ Bi.

Conversely, suppose πBiπ′. Consider some extended decision problem (A, u, π̂). We have that

Eµ̃∼〈π∨π̂〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
− Eµ̃∼〈π′∨π̂〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
=∑

ŝ∈π̂
Pr (ŝ)Eµ̃∼〈π|ŝ〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
−
∑
ŝ∈π̂

Pr (ŝ)Eµ̃∼〈π′|ŝ〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
=

∑
ŝ∈π̂

Pr (ŝ)

(
Eµ̃∼〈π|ŝ〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
− Eµ̃∼〈π′|ŝ〉

[
max
a∈A

Eω∼µ̃u (a, ω)

])
.

Since πBiπ′, we know Eµ̃∼〈π|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)]−Eµ̃∼〈π′|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥ 0 for each

ŝ and thus Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥ Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] . Since the choice of

(A, u, π̂) was arbitrary, we conclude πBπ′. Thus, Bi ⊆ B.

We now show that B = Bk. Suppose πBπ′. Suppose the value of π′ on some costly acquisition de-

cision problem (A, u, c) is v. For any ε > 0, let πε be any signal such that Eµ̃∼〈π′∨πε〉 [maxa∈A Eω∼µ̃u (a, ω)]−

c (πε) ≥ v− ε. Since πBπ′, the value of π in (A, u, πε) is at least the value of π′ in (A, u, πε), so that

Eµ̃∼〈π∨πε〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
≥ Eµ̃∼〈π′∨πε〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
.

This implies that the value of π in the costly acquisition decision problem (A, u, c) is at least v,
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since

sup
π̂∈Π

Eµ̃∼〈π∨π̂〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
− c (π̂) ≥ Eµ̃∼〈π∨πε〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
− c (πε)

≥ Eµ̃∼〈π′∨πε〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
− c (πε)

≥ v − ε.

Since ε was arbitrary, we conclude that the value of (A, u, c) under π is greater than that under π′.

Thus, π is more valuable than π′ in every costly acquisition decision problem, and hence B ⊆ Bk.

Finally, suppose πBkπ′. Consider some extended decision problem (A, u, π̂). Let

K = max
ω∈Ω

(
max
a∈A

u (a, ω)−min
a∈A

u (a, ω)

)
.

Clearly, the value of any signal (relative to π) in the decision problem (A, u) is less than K. Let

c∗ : Π→ R be as follows: c∗ (π̂) = c∗ (π) = 0 and c∗ (π) = K for all π /∈ {π̂, π }. Then, the value of

any signal in the extended decision problem (A, u, π̂) must be the same as the value of that signal

in the costly acquisition decision problem (A, u, c∗) . Since πBkπ′, we know that π is more valuable

than π′ in (A, u, c∗); thus π is more valuable than π′ in (A, u, π̂). Since the choice of (A, u, π̂) was

arbitrary, we conclude πBπ′. Thus, Bk ⊆ B.

A.2 Characterization of the martingale relation

In Remark 4.6, we referred to the following observation, which we now state formally:

Proposition 2. πMπ′ if and only if C(π)Sπ′.

As mentioned earlier, it is straightforward that C(π)Sπ′ implies that πMπ′. Here, we provide

the proof of the other direction, that πMπ′ implies C(π)Sπ′.

We begin with some notation. Let µu ∈ ∆(Ω) indicate the uniform prior over states. Let

∆o(Ω) indicate the interior of the set of beliefs. Let N = |Ω| . For a signal realization s, let p(s) be

the vector of probabilities of the signal realization s, i.e., p (s) = (pω (s))ω∈Ω. Denote its relative

likelihood vector as l(s) ≡ p(s)/
∑

ω p
ω(s). The relative likelihood vector is exactly the induced

posterior from observing s under the uniform prior µu, and for future reference, we observe that
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l (s) ·µu = 1/N . Notice that, fixing an interior prior µ0 ∈ ∆o(Ω), the posterior belief after observing

s is generated by a one-to-one mapping from l(s) into ∆(Ω). Hence, C (π) pools together all of the

realizations s ∈ π that have identical relative likelihood vectors l(s).

Now suppose that C(π) is not sufficient for π′. We seek to show that π does not martingale

dominate π′.

Because ¬ (C(π)Sπ′), there exist s ∈ π′ and s ∈ C(π) that have a non-trivial intersection (i.e.,

pω(s ∩ s) > 0 for some ω) and l(s) 6= l(s ∩ s), since l(s) 6= l(s ∩ s) implies that posterior beliefs

are different after observing s versus s and s. Fix this element s ∈ π′. Denumerate the elements of

C(π) that non-trivially intersect s as {si}i∈Q, and for each i ∈ Q define si = si ∩ s. Observe that

for i 6= j in Q, we have that l(si) 6= l(sj), because any two signal realizations in C(π) have different

relative likelihood vectors. Note that there is some i ∈ Q for which l(si) 6= l(si); let Q′ ⊆ Q be the

(non-empty) set of indices i at which l(si) 6= l(si).

Claim 1. If there exists µ0 ∈ ∆o(Ω) such that

∑
ω∈Ω

∑
i∈Q

pω(si)

∑
ω′ µ

ω′
0 p

ω′(si)∑
ω′ µ

ω′
0 p

ω′(si)

 6= ∑
ω∈Ω

pω(s), (1)

then ¬ (πMπ′).

To prove the claim, first observe that C (π)Mπ′ if and only if for all s ∈ C (π), s ∈ π′, we have

E
[
µ̃C(π)|s

]
= µs, i.e., for all ω:

∑
i∈Q

∑
ω′∈Ω

µω
′

0 p
ω′ (s)∑

ω′′ µ
ω′′
0 pω′′ (s)︸ ︷︷ ︸

=µω
′
s =Pr(ω′|s)

pω
′
(si)

pω′ (s)︸ ︷︷ ︸
=Pr(si|s,ω′)

µω0 p
ω (si)∑

ω′′ µ
ω′′
0 pω′′ (si)︸ ︷︷ ︸
=µωsi

− µω0 p
ω (s)∑

ω′′ µ
ω′′
0 pω′′ (s)

= 0

⇐⇒ µω0∑
ω′′ µ

ω′′
0 pω′′ (s)

∑
i∈Q

pω (si)

∑
ω′ µ

ω′
0 p

ω′ (si)∑
ω′′ µ

ω′′
0 pω′′ (si)

− pω (s)

 = 0.

This expression holds for all µ0 ∈ ∆o (Ω) if and only if the term in parentheses is zero for all ω.

Summing across ω gives the result.

Importantly, the RHS of (1) does not depend on µ0. So we can guarantee that there exists an

interior prior µ0 at which the two sides are not equal as long as the LHS is not constant in µ0.
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Rewriting sums as dot products and simplifying further, we get the following implication.

Claim 2. Let Hi(µ) : [0, 1]N → R be defined as

Hi(µ) ≡

(∑
ω∈Ω

pω(si)

)
µ · l(si)
µ · l(si)

. (2)

Let H(µ) ≡
∑

i∈Q′ Hi(µ). If H(µ) is non-constant over the domain µ ∈ ∆o(Ω), then ¬ (πMπ′).31

We can consider two exhaustive and mutually exclusive cases.

Case 1: Q′ is a singleton, which can be written as Q′ = {i′}; and l(si′) = µu. In this

case, µ · l(si′) = 1/N for all µ ∈ ∆o(Ω), and hence H(µ) = N (
∑

ω p
ω(si′))µ · l(si′). Moreover,

because l(si′) 6= l(si′) = µu, it also holds that µ · l(si′) is linear and non-constant in µ. Hence, H(µ)

is non-constant over the domain µ ∈ ∆o(Ω).

Case 2: There exists some i ∈ Q′ such that l(si) 6= µu. We will find a direction d∗ ∈ RN

with
∑

ω d
ω
∗ = 0 such that H(µu + δd∗) is nonconstant in δ in the neighborhood of δ = 0, which

will complete the proof.

Let

î ∈ arg max
{i∈Q′|l(si)6=l(si)}

‖l(si)− µu‖ (3)

where ‖ · ‖ denotes the Euclidean norm, and set d = µu − l(sî). From the definition of î, and the

fact that µ · µu = l (s) · µu = 1/N for all s and µ ∈ ∆ (Ω), we have

(µu + δd) · l(si) = µu · l (si) + δ
(
µu − l

(
sî
))
· l (si)

= 1/N − δ(l(sî)− µu) · (l(si)− µu)

≥ 1/N − δ‖l(sî)− µu‖‖l(si)− µu‖

≥ 1/N − δ‖l(sî)− µu‖
2

= (µu + δd) · l(sî).

(Note that the inequality is strict if i 6= î, because then l(si) 6= l(sî).) Now take δ∗ to be the unique

31The function Hi(µ) may be undefined at points µ that lead to a 0 denominator, but Hi (and therefore H) is
defined everywhere on ∆o(Ω).
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δ such that this last expression is equal to zero, i.e., δ∗ ≡ 1/(N‖l(si)− µu‖2), and for all i 6= î, we

have that (µu + δ∗d) · l(si) > 0.

If in addition we have

(µu + δ∗(µu − l(sî))) · l(sî) 6= 0,

then take d∗ = d. Otherwise, let d′ be the projection of l(sî)− µu onto the null space of l(sî)− µu,

and note that d′ 6= 0 because l(sî) 6= l(sî) (per (3)). Hence, for ε sufficiently small,

(µu + δ∗(d+ εd′)) · l(si) > 0 ∀i 6= î;

(µu + δ∗(d+ εd′)) · l(sî) 6= 0;

(µu + δ∗(d+ εd′)) · l(sî) = 0.

We then set d∗ = d+ εd′.32

Again using the fact that µu · µ = 1/N for any µ with
∑

ω∈Ω µ (ω) = 1, we have that for all

δ ∈ [0, δ∗) and for all i, (µu+δd∗) · l(si) > 0. Hence, H(µu+δd∗) is finite for all δ ∈ [0, δ∗), since the

denominators of (2) are nonzero for every i ∈ Q′; and because at δ∗ the numerator at î is non-zero,

the denominator at î is zero, and the denominators at i 6= î are all non-zero, we have that

lim
δ↗δ∗

H(µu + δd∗) = ±∞.

Finally, note that H(µu + δd∗) is a rational function of δ (and therefore analytic in δ), is defined

for all δ ∈ [0, δ∗], and only has a singularity at δ = δ∗. Thus, H must be non-constant in δ on every

open set in the interval [0, δ∗], and in particular, it is non-constant in the neighborhood of δ = 0.

A.3 The martingale property can depend on priors

We define the martingale relationM as follows: πMπ′ if E [µ̃π|s̃π′ ] = µ̃π′ holds for all priors µ0. In

this section, we note that there are signals for which E [µ̃π|s̃π′ ] = µ̃π′ holds at some interior priors

but not others. See Figure 7 for an example. Hence, the for-all quantifier on the prior has content.

In Figure 7, π is informative about the state, while π′ is informative about how informative π is.

32Note that µu + δ∗d∗ need not be a probability vector in ∆(Ω); the sum of components is 1, but it may have
negative components. The rest of the proof shows that H is non-constant on the restricted domain of ∆o(Ω).
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Figure 7: The martingale property can depend on priors

ω = L ω = R

3/40 11/2 3/40 11/2
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π′ e f e f

At prior µ0 on Pr(ω = R), it holds that µa = µ0

3−2µ0
; µb = 3µ0

2µ0+1 ; µe = µ0; and

µf = µ0. Moreover, E [µ̃π|e] = µ0µa + (1 − µ0)µb =
µ0(8µ

2
0−14µ0+9)

−4µ2
0+4µ0+3

and E [µ̃π|f ] =

1
2µa + 1

2µb = µ0(5−2µ0)
−4µ2

0+4µ0+3
. It is easy to verify that E [µ̃π|e] = µe and E [µ̃π|f ] = µf if

µ0 = 1/2, and that these equalities do not hold at any other interior prior µ0 ∈ (0, 1).

In particular, signal π realizes either a, indicating a higher chance that ω = L and yielding µa < µ0

(with beliefs in [0, 1] denoting the probability of ω = R); or b, indicating a higher chance that ω = R

and yielding µb > µ0. When e ∈ π′ is realized, π is in fact perfectly informative: a ∈ π implies

that ω = L for sure, and b ∈ π implies ω = R. And when f ∈ π′ is realized, π is uninformative: a

and b both have the same conditional likelihood across states. Since π′ is uninformative about the

state itself, though, the posterior after observing either realization from π′ is always equal to the

prior: µe = µf = µ0. But the expectation of µ̃π (the posterior of π) given either realization of π′ is

equal to the prior only when beliefs are degenerate, or when the prior is uniform at µ0 = 1/2. This

is easiest to see by considering E[µ̃π|f ]. Conditional on f ∈ π′, the signal π realizes a and b with

equal probability, independently of the prior; but the posterior beliefs µa and µb are not equally

distant from the prior. For instance, at priors µ0 ∈ (0, 1/2), it holds that µb − µ0 > µ0 − µa.

Given that this martingale property can depend on the prior, we see that there is an alternative

“martingale relation”on signals that we could have defined. Define the existence-martingale relation,

denoted M∃, as follows: πM∃π′ if there exists an interior prior µ0 at which E [µ̃π|s̃π′ ] = µ̃π′ . It

is easy to see that M (M∃: the fact that M⊆M∃ follows immediately from definitions (for-all

implies there-exists), and M 6= M∃ follows from the example in Figure 7. Moreover, it turns out

that M∃ ( B. The fact that M∃ ⊆ B can be seen by noting that if πM∃π′, then for an interior

prior µ0 at which E [µ̃π|s̃π′ ] = µ̃π′ , it holds that 〈π〉 is a mean-preserving spread of 〈π′〉; and if the

posteriors of π are a mean-preserving spread of those of π′ at any one interior prior, then they are

a mean-preserving spread at all priors, i.e., πBπ′. The fact that M∃ 6= B can be established by
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observing that, in Figure 6, πBBπ0, but, as can be directly calculated, ¬(πBM∃π0).33 Hence, we can

expand our summary of the ranking of the relations toR = R ( S =M = B ( S (M (M∃ ( B.

A.4 An alternative characterization of S, M, and B

Remark 4.7 stated the following characterizations of S, M, and B.

1. πSπ′ if and only if ∃π∗ s.t. C (π∗) = C (π), π∗Rπ, and π∗Rπ′. (We can take π∗ = π ∨ π′.)

2. πMπ′ if and only if ∃π∗ s.t. C (π∗) = C (π) and π∗Rπ′.

3. πBπ′ if and only if ∃π∗ s.t. π∗ ∼ π and π∗Rπ′.

Part 3 had already been presented in Remark 4.2.

To see the only if direction of Part 1, first suppose that πSπ′, and let π∗ = π ∨ π′. We see that

C(π∗) = C(π ∨ π′) = C(π), with the second equality following from the fact that πSπ′ ⇔ µ̃π∨π′ =

µ̃π. And by construction, π∗Rπ and π∗Rπ′. Next, consider the if direction. Suppose that ∃π∗ s.t.

C (π∗) = C (π), π∗Rπ, and π∗Rπ′. The latter two properties imply that π∗R (π ∨ π′). Therefore,

C(π∗)BC(π ∨ π′)BC(π). This fact, coupled with C(π) = C(π∗) implies that C (π∗) ∼ C(π ∨ π′) ∼

C(π). Finally, C(π ∨ π′) ∼ C(π) implies that πSπ′.

Part 2 follows from Part 1 combined with the observation (Remark 4.6, Proposition 2) that

πMπ′ if and only if C(π)Sπ′. First, we suppose that πMπ′, and show that ∃π∗ s.t. C (π∗) = C (π)

and π∗Rπ′. This holds because πMπ′ implies C(π)Sπ′, which implies by Part 1 that there exists π∗

(including π∗ = π ∨ π′) satisfying these conditions. Next, we suppose that ∃π∗ s.t. C (π∗) = C (π)

and π∗Rπ′, and show that πMπ′. Take such a π∗, and observe that it satisfies π∗RC(π∗) and

C(π∗) = C(π), and hence π∗RC(π). Because π∗ by definition also satisfies C(π∗) = C(C(π)) (since

C(C(π)) = C(π)) and π∗Rπ′, Part 1 implies that C(π)Sπ′, which then implies πMπ′.

33Writing all beliefs in terms of Pr(ω = R), we have µk = µ0·1/3
µ0·1/3+(1−µ0)·2/3 at k ∈ π0, along with µa =

µ0·1/4
µ0·1/4+(1−µ0)·3/4 and µb = µ0·3/4

µ0·3/4+(1−µ0)·1/4 at a and b in πB. Conditional on realization k ∈ π0, the expected

belief at πB is given by E[µ̃πB |k] = (1 − µk)µa + µk(µa · 3/4 + µb · 1/4). The martingale property at prior µ0 holds

only if E[µ̃πB |k]− µk = 0, but the LHS simplifies to − µ0(1−µ0)

6+5µ0−12µ2
0+4µ3

0
, which has no zeroes for µ0 ∈ (0, 1).
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Figure 8: Martingale is not transitive
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It holds that π1Mπ2 and π2Mπ3 but not that π1Mπ3.

A.5 The martingale relation is not transitive

Consider Figure 8. We see that π1Mπ2 because π1Rπ2; and π2Mπ3 because π2Sπ3, which may

not be immediately obvious.34 However, it is not the case that π1Mπ3: with a prior of µ0 = 1/2

probability on ω = R, we have that µa = 1/4 while E[µ̃π1 |a] = 2
3 · 0 + 1

3 ·
1
2 = 1

6 .

A.6 Discriminating domains

Proposition 3. If D is not discriminating, then VD 6= O.

Proof. Suppose that D is not discriminating. There exist distinct ω, ω′ ∈ Ω such that for every

decision problem in D, arg maxa∈A u (a, ω) ∩ arg maxa∈A u (a, ω′) 6= ∅. Hence, there is an action

that is optimal in both ω and ω’.

Now, consider the signals

π =
{{
ω, ω′

}
× [0, 1] ,

(
Ω \

{
ω, ω′

})
× [0, 1]

}
π′ =

{
{ω} × [0, 1] ,

{
ω′
}
× [0, 1] ,

(
Ω \

{
ω, ω′

})
× [0, 1]

}
.

Clearly, π does not reveal or refine π′. Yet, πVDπ′: the signals differ only in whether they distinguish

ω from ω′, but there is an action that is optimal in both states, so there is no value in distinguishing

those states.

34To see that π2Sπ3, or in other words that π2 ∨ π3 induces the same beliefs as π2, observe that π2 = {u, v} while
π2∨π3 = {a ∩ v = a, b ∩ v, b ∩ u = u}. So it suffices to show that the likelihood ratios of (and thus the beliefs at) a and
of b∩v match that of v, which indeed they do: Pr(v|L)/Pr(v|R) = Pr(b∩v|L)/Pr(b∩v|R) = Pr(a|L)/Pr(a|R) = 3.
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