Skip to main content

Spontaneous Speech

  • Chapter
  • First Online:

Abstract

In this chapter the authors critically discuss the relevance of analyzing spontaneous speech in the peri-operative awake surgery phase of glioma patients. First a brief review of the neural basis is provided in order to shed light on the dissociation between spontaneous speech and other isolated language/speech functions, in the literature known as the “SMA syndrome” or “dynamic aphasia.” Subsequently, methods to assess (semi-)spontaneous speech intraoperatively are discussed, as well as their potential added value for long-term postoperative language outcome. Until now, adequate and sensitive assessment of spontaneous speech in clinical settings still remains a challenge as it is still not yet fully understood in what exact way glioma patients show impairments and suffer from it in the perioperative phase due to large individual variability. However three different approaches appeared to be essential in glioma treatment to elucidate the quality of daily language use: (1) actual transcription of spontaneous speech, (2) administration of semi-spontaneous speech tasks (e.g., sentence completion in broad context), and (3) self-reported language complaints. By only monitoring language functions in isolation, “subtle” yet devastating impairments could be missed, increasing the risk for long-term postoperative impairments with negative effects on daily life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Dynamic Aphasia Test consists of sentence completion with word and constituents, sentence generation with a given word or sentence cue, picture description and spontaneous speech in daily situations based on Bloom and Fischler [55], Blomert et al. [56] and Robinson et al. [13].

References

  1. Caramazza A. How many levels of processing are there in lexical access? Cogn Neuropsychol. 1997;14:177–208.

    Article  Google Scholar 

  2. Dell GS, Schwartz MF, Martin N, Saffran EM, Gagnon DA. Lexical access in aphasic and nonaphasic speakers. Psychol Rev. 1997;104(4):801–38.

    Article  CAS  PubMed  Google Scholar 

  3. Fillmore CJ. On fluency. In: Fillmore DKCJ, Wang WSJ, editors. Individual differences in language ability and language behavior. New York: Academic; 1979. p. 85–101.

    Chapter  Google Scholar 

  4. Lichtheim L. On aphasia. Brain. 1885;7:433–84.

    Article  Google Scholar 

  5. Krainik A, Lehéricy S, Duffau H, Capelle L, Chainay H, Cornu P, Cohen L, Boch AL, Mangin JF, Le Bihan D, Marsault C. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60(4):587–94.

    Article  CAS  PubMed  Google Scholar 

  6. Naeser MA, Hayward RW. Lesion localization in aphasia with cranial computed tomography and the Boston Diagnostic Aphasia Exam. Neurology. 1978;28(6):545–51.

    Article  CAS  PubMed  Google Scholar 

  7. Luria AR. raumaticheskaya Aphasia. Klinika, semantika i vosstanovitelnaya terapiya [Traumatic aphasia]. Academia Meditsintskikh Nauk SSSR. 1947.

    Google Scholar 

  8. Luria AR, Tsvetkova LS. The mechanism of ‘dynamic aphasia’. Found Lang. 1968;4(3):296–307.

    Google Scholar 

  9. Ardila A, Lopez MV. Transcortical motor aphasia: one or two aphasias? Brain Lang. 1984;22(2):350–3.

    Article  CAS  PubMed  Google Scholar 

  10. Costello AL, Warrington EK. Dynamic aphasia: the selective impairment of verbal planning. Cortex. 1989;25(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  11. Robinson G, Blair J, Cipolotti L. Dynamic aphasia: an inability to select between competing verbal responses? Brain. 1998;121(Pt 1):77–89.

    Article  PubMed  Google Scholar 

  12. Esmonde T, Giles E, Xuereb J, Hodges J. Progressive supranuclear palsy presenting with dynamic aphasia. J Neurol Neurosurg Psychiatry. 1996;60(4):403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robinson G, Shallice T, Cipolotti L. Dynamic aphasia in progressive supranuclear palsy: a deficit in generating a fluent sequence of novel thought. Neuropsychologia. 2006;44(8):1344–60.

    Article  PubMed  Google Scholar 

  14. Jehna M, Becker J, Zaar K, von Campe G, Mahdy Ali K, Reishofer G, Payer F, Synowitz M, Fazekas F, Enzinger C, Deutschmann H. Symmetry of the arcuate fasciculus and its impact on language performance of patients with brain tumors in the language-dominant hemisphere. J Neurosurg. 2017;127(6):1407–16.

    Article  PubMed  Google Scholar 

  15. Thomson AM, Taylor R, Whittle IR. Assessment of communication impairment and the effects of resective surgery in solitary, right-sided supratentorial intracranial tumours: a prospective study. Br J Neurosurg. 1998;12(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 2016;162:60–71.

    Article  PubMed  Google Scholar 

  17. Borovsky A, Saygin AP, Bates E, Dronkers N. Lesion correlates of conversational speech production deficits. Neuropsychologia. 2007;45(11):2525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rogalski E, Cobia D, Harrison TM, Wieneke C, Thompson CK, Weintraub S, Mesulam MM. Anatomy of language impairments in primary progressive aphasia. J Neurosci. 2011;31(9):3344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, Miller BL, Gorno-Tempini ML. Connected speech production in three variants of primary progressive aphasia. Brain. 2010;133(Pt 7):2069–88.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32(2):821–41.

    Article  PubMed  Google Scholar 

  21. Duffau H, Lopes M, Denvil D, Capelle L. Delayed onset of the supplementary motor area syndrome after surgical resection of the mesial frontal lobe: a time course study using intraoperative mapping in an awake patient. Stereotact Funct Neurosurg. 2001;76(2):74–82.

    Article  CAS  PubMed  Google Scholar 

  22. Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM. Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci. 1977;34(3):301–14.

    Article  CAS  PubMed  Google Scholar 

  23. Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, Valabregue R, Thiebaut de Schotten M. Short frontal lobe connections of the human brain. Cortex. 2012;48(2):273–91.

    Article  PubMed  Google Scholar 

  24. Basilakos A, Fillmore PT, Rorden C, Guo D, Bonilha L, Fridriksson J. Regional white matter damage predicts speech fluency in chronic post-stroke aphasia. Front Hum Neurosci. 2014;8:845.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li M, Zhang Y, Song L, Huang R, Ding J, Fang Y, Xu Y, Han Z. Structural connectivity subserving verbal fluency revealed by lesion-behavior mapping in stroke patients. Neuropsychologia. 2017;101:85–96.

    Article  PubMed  Google Scholar 

  26. Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, Thompson CK, Thiebaut de Schotten M, Dell’Acqua F, Weintraub S, Rogalski E. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136(Pt 8):2619–28.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mandelli ML, Caverzasi E, Binney RJ, Henry ML, Lobach I, Block N, Amirbekian B, Dronkers N, Miller BL, Henry RG, Gorno-Tempini ML. Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci. 2014;34(29):9754–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct. 2015;220(6):3399–412.

    Article  PubMed  Google Scholar 

  29. Chernoff BL, Teghipco A, Garcea FE, Sims MH, Paul DA, Tivarus ME, Smith SO, Pilcher WH, Mahon BZ. A role for the frontal aslant tract in speech planning: a neurosurgical case study. J Cogn Neurosci. 2018;30(5):752–69. https://doi.org/10.1162/jocn_a_01244. PMID: 29569513.

    Article  PubMed  Google Scholar 

  30. Dragoy O, Zyryanov A, Bronov O, Gordeyeva E, Gronskaya N, Kryuchkova O, Klyuev E, Kopachev D, Medyanik I, Mishnyakova L, Pedyash N, Pronin I, Reutov A, Sitnikov A, Stupina E, Yashin K, Zhirnova V, Zuev A. Functional linguistic specificity of the left frontal aslant tract for spontaneous speech fluency: evidence from intraoperative language mapping. Brain Lang. 2020;208:104836.

    Article  PubMed  Google Scholar 

  31. Lüders HO, Dinner DS, Morris HH, Wyllie E, Comair YG. Cortical electrical stimulation in humans. The negative motor areas. Adv Neurol. 1995;67:115–29.

    PubMed  Google Scholar 

  32. Rostomily RC, Berger MS, Ojemann GA, Lettich E. Postoperative deficits and functional recovery following removal of tumors involving the dominant hemisphere supplementary motor area. J Neurosurg. 1991;75(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  33. Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H. Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp. 2013;34(11):3023–30.

    Article  PubMed  Google Scholar 

  34. Alario FX, Chainay H, Lehericy S, Cohen L. The role of the supplementary motor area (SMA) in word production. Brain Res. 2006;1076(1):129–43.

    Article  CAS  PubMed  Google Scholar 

  35. Corrivetti F, de Schotten MT, Poisson I, Froelich S, Descoteaux M, Rheault F, Mandonnet E. Dissociating motor-speech from lexico-semantic systems in the left frontal lobe: insight from a series of 17 awake intraoperative mappings in glioma patients. Brain Struct Funct. 2019;224(3):1151–65.

    Article  PubMed  Google Scholar 

  36. Chernoff BL, Sims MH, Smith SO, Pilcher WH, Mahon BZ. Direct electrical stimulation of the left frontal aslant tract disrupts sentence planning without affecting articulation. Cogn Neuropsychol. 2019;36(3–4):178–92. https://doi.org/10.1080/02643294.2019.1619544.

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):2559–65.

    Google Scholar 

  38. De Witte E, Mariën P. The neurolinguistic approach to awake surgery reviewed. Clin Neurol Neurosurg. 2013;115(2):127–45.

    Article  PubMed  Google Scholar 

  39. De Witte E, Satoer D, Robert E, Colle H, Verheyen S, Visch-Brink E, Mariën P. The Dutch Linguistic Intraoperative Protocol: a valid linguistic approach to awake brain surgery. Brain Lang. 2015a;140:35–48.

    Article  PubMed  Google Scholar 

  40. Satoer D, Vincent A, Smits M, Dirven C, Visch-Brink E. Spontaneous speech of patients with gliomas in eloquent areas before and early after surgery. Acta Neurochir (Wien). 2013;155(4):685–92.

    Article  Google Scholar 

  41. De Witte E, Satoer D, Colle H, Robert E, Visch-Brink E, Mariën P. Subcortical language and non-language mapping in awake brain surgery: the use of multimodal tests. Acta Neurochir (Wien). 2015b;157(4):577–88.

    Article  Google Scholar 

  42. Satoer D, Kloet A, Vincent A, Dirven C, Visch-Brink E. Dynamic aphasia following low-grade glioma surgery near the supplementary motor area: a selective spontaneous speech deficit. Neurocase. 2014;20(6):704–16.

    Article  PubMed  Google Scholar 

  43. Ojemann G, Mateer C. Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science. 1979;205(4413):1401–3.

    Article  CAS  PubMed  Google Scholar 

  44. Zanin E, Riva M, Bambini V, Cappa SF, Magrassi L, Moro A. The contribution of surgical brain mapping to the understanding of the anatomo-functional basis of syntax: a critical review. Neurol Sci. 2017;38(9):1579–89.

    Article  PubMed  Google Scholar 

  45. Ries SK, Piai V, Perry D, Griffin S, Jordan K, Henry R, Knight RT, Berger MS. Roles of ventral versus dorsal pathways in language production: an awake language mapping study. Brain Lang. 2019;191:17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Witte E, Satoer D, Visch-Brink E, Mariën P. Cognitive outcome after awake surgery for left and right hemisphere tumours. In: Academy of Aphasia 53rd Annual Meeting. 2015c.

    Google Scholar 

  47. Chivukula S, Pikul BK, Black KL, Pouratian N, Bookheimer SY. Contralateral functional reorganization of the speech supplementary motor area following neurosurgical tumor resection. Brain Lang. 2018;183:41–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Satoer D, Vincent A, Ruhaak L, Smits M, Dirven C, Visch-Brink E. Spontaneous speech in patients with gliomas in eloquent areas: evaluation until 1 year after surgery. Clin Neurol Neurosurg. 2018;167:112–6.

    Article  PubMed  Google Scholar 

  49. Satoer D, De Witte E, Smits M, Bastiaanse R, Vincent A, Mariën P, Visch-Brink E. Differential effects of awake glioma surgery in “critical” language areas on cognition: 4 case studies. Case Rep Neurol Med. 2017;2017:6038641.

    PubMed  PubMed Central  Google Scholar 

  50. Rofes A, Talacchi A, Santini B, Pinna G, Nickels L, Bastiaanse R, Miceli G. Language in individuals with left hemisphere tumors: is spontaneous speech analysis comparable to formal testing? J Clin Exp Neuropsychol. 2018;40(7):722–32. https://doi.org/10.1080/13803395.2018.1426734.

    Article  PubMed  Google Scholar 

  51. McCarron A, Chavez A, Babiak M, Berger MS, Chang EF, Wilson SM. Connected speech in transient aphasias after left hemisphere resective surgery. Aphasiology. 2017;31(11):1266–81.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Satoer D, Vork J, Visch-Brink E, Smits M, Dirven C, Vincent A. Cognitive functioning early after surgery of gliomas in eloquent areas. J Neurosurg. 2012;117(5):831–8.

    Article  PubMed  Google Scholar 

  53. Goodglass H, Kaplan E. The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger; 1983.

    Google Scholar 

  54. Satoer D. Speaking on the edge: the protection of cognition after glioma surgery in eloquent areas. Unpublished doctoral dissertation. Erasmus University, Rotterdam. 2014.

    Google Scholar 

  55. Nevler N, Ash S, Irwin DJ, Liberman M, Grossman M. Validated automatic speech biomarkers in primary progressive aphasia. Ann Clin Transl Neurol. 2019;6(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  56. Bloom PA, Fischler I. Completion norms for 329 sentence contexts. Mem Cogn. 1980;8(6):631–42.

    Article  CAS  Google Scholar 

  57. Blomert L, Kloster C, Kean ML. Amsterdam-Nijmegen test voor Alledaagse Taalvaardigheden. (ANTAT). Swets & Zeitlinger; 1995.

    Google Scholar 

  58. Gold M, Nadeau SE, Jacobs DH, Adair JC, Rothi LJ, Heilman KM. Adynamic aphasia: a transcortical motor aphasia with defective semantic strategy formation. Brain Lang. 1997;57(3):374–93.

    Article  CAS  PubMed  Google Scholar 

  59. Quirarte JA, Kumar VA, Liu HL, Noll KR, Wefel JS, Lang FF. Language supplementary motor area syndrome correlated with dynamic changes in perioperative task-based functional MRI activations: case report. J Neurosurg. 2020:1–5.

    Google Scholar 

  60. Young JS, Morshed RA, Mansoori Z, Cha S, Berger MS. Disruption of frontal aslant tract is not associated with long-term postoperative language deficits. World Neurosurg. 2020;133:192–5.

    Article  PubMed  Google Scholar 

  61. Satoer D, de Witte E, Bastiaanse R, Vincent A, Mariën P, Visch-Brink E. Diagnostic Instrument for Mild Aphasia (DIMA): standardization and clinical application. In: Academy of Aphasia 55th Annual Meeting. 2019.

    Google Scholar 

  62. Wolthuis N. Language impairments and resting-state EEG in brain tumour patients: Revealing connections. University of Groningen. 2021. https://doi.org/10.33612/diss.159333388.

  63. van der Linden SD, Gehring K, De Baene W, Emons WHM, Rutten GM, Sitskoorn MM. Assessment of executive functioning in patients with meningioma and low-grade glioma: a comparison of self-report, proxy-report, and test performance. J Int Neuropsychol Soc. 2020;26(2):187–96.

    Article  PubMed  Google Scholar 

  64. Antonsson M, Longoni F, Jakola A, Tisell M, Thordstein M, Hartelius L. Pre-operative language ability in patients with presumed low-grade glioma. J Neurooncol. 2018;137(1):93–102.

    Article  PubMed  Google Scholar 

  65. Pranckeviciene A, Deltuva VP, Tamasauskas A, Zegliene J, Bunevicius A. Clinical and biological correlates of preoperative cognitive functioning of glioma and meningioma patients. Biomed Res Int. 2020;2020:2054859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kruger J, Dunning D. Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J Pers Soc Psychol. 1999;77(6):1121–34.

    Article  CAS  PubMed  Google Scholar 

  67. Gehring K, Taphoorn MJ, Sitskoorn MM, Aaronson NK. Predictors of subjective versus objective cognitive functioning in patients with stable grades II and III glioma. Neurooncol Pract. 2015;2(1):20–31.

    PubMed  PubMed Central  Google Scholar 

  68. Herbet G, Moritz-Gasser S, Duffau H. Electrical stimulation of the dorsolateral prefrontal cortex impairs semantic cognition. Neurology. 2018;90(12):e1077–84.

    Article  PubMed  Google Scholar 

  69. Chang EF, Kurteff G, Wilson SM. Selective interference with syntactic encoding during sentence production by direct electrocortical stimulation of the inferior frontal gyrus. J Cogn Neurosci. 2018;30(3):411–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djaina Satoer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satoer, D., De Witte, E., Dragoy, O. (2021). Spontaneous Speech. In: Mandonnet, E., Herbet, G. (eds) Intraoperative Mapping of Cognitive Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-75071-8_6

Download citation

Publish with us

Policies and ethics