Skip to main content

Isolation and Lipidomic Screening of Human Milk Extracellular Vesicles

  • Protocol
  • First Online:
Book cover Mass Spectrometry for Metabolomics

Abstract

Extracellular vesicles (EVs) are secreted by cells and can be found in biological fluids (e.g., blood, saliva, urine, cerebrospinal fluid, and milk). EV isolation needs to be optimized carefully depending on the type of biofluid and tissue. Human milk (HM) is known to be a rich source of EVs, and they are thought to be partially responsible for the benefits associated with breastfeeding. Here, a workflow for the isolation and lipidomic analysis of HM-EVs is described. The procedure encompasses initial steps such as sample collection and storage, a detailed description for HM-EV isolation by multistage ultracentrifugation, metabolite extraction, and analysis by liquid chromatography coupled to mass spectrometry, as well as data analysis and curation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367

    Google Scholar 

  2. Altadill T, Campoy I, Lanau L et al (2016) Enabling metabolomics based biomarker discovery studies using molecular phenotyping of exosome-like vesicles. PLoS One 11:e0151339

    Article  Google Scholar 

  3. Zempleni J, Aguilar-Lozano A, Sadri M et al (2017) Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J Nutr 147:3–10

    Article  CAS  Google Scholar 

  4. Liao Y, Du X, Li J et al (2017) Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res 61:1700082

    Article  Google Scholar 

  5. Kahn S, Liao Y, Du X et al (2018) Exosomal MicroRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol Nutr Food Res 62:1701050

    Article  Google Scholar 

  6. Yang M, Song D, Cao X et al (2017) Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Res Int 92:17–25

    Article  CAS  Google Scholar 

  7. de la Torre Gomez C, Goreham RV, Bech Serra JJ et al (2018) “Exosomics”—a review of biophysics, biology and biochemistry of exosomes with a focus on human breast Milk. Front Genet 9:92

    Article  Google Scholar 

  8. Royo F, Gil-Carton D, Gonzalez E et al (2019) Differences in the metabolite composition and mechanical properties of extracellular vesicles secreted by hepatic cellular models. J Extracell Vesicles 8:1575678

    Article  CAS  Google Scholar 

  9. Clos-Garcia M, Loizaga-Iriarte A, Zuñiga-Garcia P et al (2018) Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J Extracell Vesicles 7:1470442

    Article  Google Scholar 

  10. Haraszti RA, Didiot M-C, Sapp E et al (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:32570

    Article  Google Scholar 

  11. Ramos-Garcia V, Ten-Doménech I, Moreno-Giménez A et al (2021) ATR-FTIR spectroscopy for the routine quality control of exosome isolations. Chemom Intell Lab Syst 104401

    Google Scholar 

  12. Zonneveld MI, Herwijnen MJC, Fernandez-Gutierrez MM et al (2021) Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses. J Extracell Vesicles:10

    Google Scholar 

  13. Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360

    Article  Google Scholar 

  14. Ten-Doménech I, Ramos-Garcia V, Piñeiro-Ramos JD et al (2020) Current practice in untargeted human milk metabolomics. Meta 10:43

    Google Scholar 

  15. Piñeiro-Ramos JD, Parra-Llorca A, Ten-Doménech I et al (2020) Effect of donor human milk on host-gut microbiota and metabolic interactions in preterm infants. Clin Nutr

    Google Scholar 

  16. Ten-Doménech I, Martínez-Sena T, Moreno-Torres M et al (2020) Comparing targeted vs. untargeted MS2 data-dependent acquisition for peak annotation in LC-MS metabolomics. Metabolites 10:126

    Article  Google Scholar 

  17. Broadhurst D, Goodacre R, Reinke SN et al (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metab Off J Metab Soc 14:72

    Google Scholar 

  18. Kuligowski J, Sánchez-Illana Á, Sanjuán-Herráez D et al (2015) Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 140:7810–7817

    Article  CAS  Google Scholar 

  19. Sánchez-Illana Á, Pérez-Guaita D, Cuesta-García D et al (2018) Model selection for within-batch effect correction in UPLC-MS metabolomics using quality control – support vector regression. Anal Chim Acta 1026:62–68

    Article  Google Scholar 

  20. Martínez-Sena T, Luongo G, Sanjuan-Herráez D et al (2019) Monitoring of system conditioning after blank injections in untargeted UPLC-MS metabolomic analysis. Sci Rep 9:1–9

    Article  Google Scholar 

  21. Smith CA, Want EJ, O’Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  Google Scholar 

  22. Kuhl C, Tautenhahn R, Böttcher C et al (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283–289

    Article  CAS  Google Scholar 

  23. Libiseller G, Dvorzak M, Kleb U et al (2015) IPO: a tool for automated optimization of XCMS parameters. BMC Bioinf 16:118

    Article  Google Scholar 

  24. Salek RM, Steinbeck C, Viant MR et al (2013) The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2

    Google Scholar 

  25. Kind T, Liu K-H, Lee DY et al (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758

    Article  CAS  Google Scholar 

  26. Hutchins PD, Russell JD, Coon JJ (2018) LipiDex: an integrated software package for high-confidence lipid identification. Cell Syst 6:621-625.e5

    PubMed  PubMed Central  Google Scholar 

  27. Sánchez-Illana Á, Piñeiro-Ramos JD, Sanjuan-Herráez JD et al (2018) Evaluation of batch effect elimination using quality control replicates in LC-MS metabolite profiling. Anal Chim Acta 1019:38–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kuligowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramos-Garcia, V. et al. (2023). Isolation and Lipidomic Screening of Human Milk Extracellular Vesicles. In: González-Domínguez, R. (eds) Mass Spectrometry for Metabolomics. Methods in Molecular Biology, vol 2571. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2699-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2699-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2698-6

  • Online ISBN: 978-1-0716-2699-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics