Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum photonics with layered 2D materials

Abstract

Solid-state quantum devices use quantum entanglement for various quantum technologies, such as quantum computation, encryption, communication and sensing. Solid-state platforms for quantum photonics include single molecules, individual defects in crystals and semiconductor quantum dots, which have enabled coherent quantum control and readout of single spins (stationary quantum bits) and generation of indistinguishable single photons (flying quantum bits) and their entanglement. In the past 6 years, new opportunities have arisen with the emergence of 2D layered van der Waals materials. These materials offer a highly attractive quantum photonic platform that provides maximum versatility, ultrahigh light–matter interaction efficiency and novel opportunities to engineer quantum states. In this Review, we discuss the recent progress in the field of 2D layered materials towards coherent quantum photonic devices. We focus on the current state of the art and summarize the fundamental properties and current challenges. Finally, we provide an outlook for future prospects in this rapidly advancing field.

Key points

  • 2D materials host quantum emitters with strong light–matter interaction that can be integrated into on-chip devices.

  • Some 2D quantum emitters have an intrinsic spin degree of freedom that can be harnessed for spin–photon entanglement.

  • The ease with which 2D materials can be transferred onto photonic circuits to create hybrid devices provides new opportunities for scalable quantum photonic devices.

  • While quantum emitters in several 2D materials have been successfully identified, there remain challenges to building functional quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPEs in WSe2.
Fig. 2: WSe2 SPEs in heterostructure devices.
Fig. 3: Moiré-heterostructure-based single-photon emitters.
Fig. 4: hBN-based single-photon emitters.
Fig. 5: A development timeline of quantum photonics platforms.

Similar content being viewed by others

References

  1. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Patel, K. A. et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X 2, 041010 (2012).

    Google Scholar 

  4. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  5. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016).

    Article  ADS  Google Scholar 

  6. Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363–373 (2015).

    Article  ADS  Google Scholar 

  7. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  ADS  Google Scholar 

  8. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  9. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  ADS  Google Scholar 

  10. He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  ADS  Google Scholar 

  11. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  ADS  Google Scholar 

  12. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  ADS  Google Scholar 

  13. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    Article  ADS  Google Scholar 

  14. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  ADS  Google Scholar 

  15. Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    Article  ADS  Google Scholar 

  16. Kern, J. et al. Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101–7105 (2016).

    Article  Google Scholar 

  17. Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article  ADS  Google Scholar 

  18. Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  ADS  Google Scholar 

  19. Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

    Article  ADS  Google Scholar 

  20. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  21. Tripathi, L. N. et al. Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5, 1919–1926 (2018).

    Article  Google Scholar 

  22. Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).

    Article  ADS  Google Scholar 

  23. Cai, T. et al. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466–3471 (2018).

    Article  Google Scholar 

  24. Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).

    Article  ADS  Google Scholar 

  25. Flatten, L. C. et al. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 112, 191105 (2018).

    Article  ADS  Google Scholar 

  26. White, D. et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441–448 (2019).

    Article  ADS  Google Scholar 

  27. Blauth, M. et al. Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. 18, 6812–6819 (2018).

    Article  ADS  Google Scholar 

  28. Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).

    Article  ADS  Google Scholar 

  29. Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Article  ADS  Google Scholar 

  30. Kim, S. et al. Integrated on chip platform with quantum emitters in layered materials. Adv. Opt. Mater. 7, 1901132 (2019).

    Article  Google Scholar 

  31. Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).

    Article  ADS  Google Scholar 

  32. Brotons-Gisbert, M. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).

    Article  ADS  Google Scholar 

  33. Lu, X. et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).

    Article  ADS  Google Scholar 

  34. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  ADS  Google Scholar 

  35. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  Google Scholar 

  36. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  37. Anichini, C. et al. Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 4860–4908 (2018).

    Article  Google Scholar 

  38. Chen, Z., Biscaras, J. & Shukla, A. A high performance graphene/few-layer InSe photo-detector. Nanoscale 7, 5981–5986 (2015).

    Article  ADS  Google Scholar 

  39. Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    Article  ADS  Google Scholar 

  40. Oberreiter, L. & Gerhardt, I. Light on a beam splitter: more randomness with single photons. Laser Photonics Rev. 10, 108–115 (2016).

    Article  ADS  Google Scholar 

  41. Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–1236 (2020).

    Article  Google Scholar 

  42. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  43. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

    Article  ADS  Google Scholar 

  45. Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

    Article  ADS  Google Scholar 

  46. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  47. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article  ADS  Google Scholar 

  48. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  ADS  Google Scholar 

  49. Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).

    Article  ADS  Google Scholar 

  50. Delteil, A., Gao, W.-b, Fallahi, P., Miguel-Sanchez, J. & Imamoğlu, A. Observation of quantum jumps of a single quantum dot spin using submicrosecond single-shot optical readout. Phys. Rev. Lett. 112, 116802 (2014).

    Article  ADS  Google Scholar 

  51. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  ADS  Google Scholar 

  52. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  Google Scholar 

  53. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  54. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    Article  ADS  Google Scholar 

  56. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  57. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  58. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  ADS  Google Scholar 

  59. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  ADS  Google Scholar 

  60. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    Google Scholar 

  61. Fu, K.-M. C. et al. Ultrafast control of donor-bound electron spins with single detuned optical pulses. Nat. Phys. 4, 780–784 (2008).

    Article  Google Scholar 

  62. Aharonovich, I. et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011).

    Article  ADS  Google Scholar 

  63. Lohrmann, A., Johnson, B. C., McCallum, J. C. & Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017).

    Article  ADS  Google Scholar 

  64. Petroff, P., Imamoglu, A. & Lorke, A. Epitaxially self-assembled quantum dots. Phys. Today 54, 46–52 (2001).

    Article  Google Scholar 

  65. Gammon, D., Shanabrook, B. V. & Katzer, D. S. Excitons, phonons, and interfaces in GaAs/AlAs quantum-well structures. Phys. Rev. Lett. 67, 1547–1550 (1991).

    Article  ADS  Google Scholar 

  66. Klein, J. et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 10, 2755 (2019).

    Article  ADS  Google Scholar 

  67. Barthelmi, K. et al. Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 117, 070501 (2020).

    Article  ADS  Google Scholar 

  68. Wu, F., Lovorn, T. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).

    Article  ADS  Google Scholar 

  69. Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

    Article  ADS  Google Scholar 

  70. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  ADS  Google Scholar 

  71. Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).

    Article  ADS  Google Scholar 

  72. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  73. He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).

    Article  ADS  Google Scholar 

  74. Chakraborty, C. et al. 3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure. Nano Lett. 18, 2859–2863 (2018).

    Article  ADS  Google Scholar 

  75. Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

    Article  ADS  Google Scholar 

  76. Kumar, S. et al. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016).

    Article  ADS  Google Scholar 

  77. He, Y.-M., Höfling, S. & Schneider, C. Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe2. Opt. Express 24, 8066–8073 (2016).

    Article  ADS  Google Scholar 

  78. Brooks, M. & Burkard, G. Theory of strain-induced confinement in transition metal dichalcogenide monolayers. Phys. Rev. B 97, 195454 (2018).

    Article  ADS  Google Scholar 

  79. Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).

    Article  ADS  Google Scholar 

  80. Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

    Article  ADS  Google Scholar 

  81. Chakraborty, C., Goodfellow, K. M. & Nick Vamivakas, A. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6, 2081–2087 (2016).

    Article  ADS  Google Scholar 

  82. Yu, L. et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021).

    Article  ADS  Google Scholar 

  83. Shepard, G. D. et al. Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater. 4, 021019 (2017).

    Article  Google Scholar 

  84. Rosenberger, M. R. et al. Quantum calligraphy: writing single-photon emitters in a two-dimensional materials platform. ACS Nano 13, 904–912 (2019).

    Article  Google Scholar 

  85. Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article  ADS  Google Scholar 

  86. Chirolli, L., Prada, E., Guinea, F., Roldán, R. & San-Jose, P. Strain-induced bound states in transition-metal dichalcogenide bubbles. 2D Mater. 6, 025010 (2019).

    Article  Google Scholar 

  87. Koperski, M. et al. Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics 6, 1289–1308 (2017).

    Article  Google Scholar 

  88. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  89. Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Article  ADS  Google Scholar 

  90. Zheng, Y. J. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 13, 6050–6059 (2019).

    Article  Google Scholar 

  91. Zhou, X., Zhang, Z. & Guo, W. Dislocations as single photon sources in two-dimensional semiconductors. Nano Lett. 20, 4136–4143 (2020).

    Article  ADS  Google Scholar 

  92. Moody, G. et al. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 121, 057403 (2018).

    Article  ADS  Google Scholar 

  93. Klein, J. et al. Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photonics 8, 669–677 (2021).

    Article  Google Scholar 

  94. Hötger, A. et al. Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021).

    Article  ADS  Google Scholar 

  95. Wierzbowski, J. et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci. Rep. 7, 12383 (2017).

    Article  ADS  Google Scholar 

  96. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  97. Schwarz, S. et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater. 3, 025038 (2016).

    Article  Google Scholar 

  98. Clark, G. et al. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 16, 3944–3948 (2016).

    Article  ADS  Google Scholar 

  99. Liu, G.-B., Pang, H., Yao, Y. & Yao, W. Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New J. Phys. 16, 105011 (2014).

    Article  ADS  Google Scholar 

  100. Roch, J. G. et al. Quantum-confined Stark effect in a MoS2 monolayer van der Waals heterostructure. Nano Lett. 18, 1070–1074 (2018).

    Article  ADS  Google Scholar 

  101. Chakraborty, C. et al. Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017).

    Article  ADS  Google Scholar 

  102. Chakraborty, C., Jungwirth, N. R., Fuchs, G. D. & Vamivakas, A. N. Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters. Phys. Rev. B 99, 045308 (2019).

    Article  ADS  Google Scholar 

  103. Schwarz, S. et al. Two-dimensional metal–chalcogenide films in tunable optical microcavities. Nano Lett. 14, 7003–7008 (2014).

    Article  ADS  Google Scholar 

  104. Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).

    Article  ADS  Google Scholar 

  105. Häußler, S. et al. Tunable fiber-cavity enhanced photon emission from defect centers in hBN. Adv. Opt. Mater. 9, 2002218 (2021).

    Article  Google Scholar 

  106. Ye, Y. et al. Single photon emission from deep-level defects in monolayer WSe2. Phys. Rev. B 95, 245313 (2017).

    Article  ADS  Google Scholar 

  107. Kim, H., Moon, J. S., Noh, G., Lee, J. & Kim, J.-H. Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534–7539 (2019).

    Article  ADS  Google Scholar 

  108. Iff, O. et al. Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931–6936 (2019).

    Article  ADS  Google Scholar 

  109. Ren, T. & Loh, K. P. On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. J. Appl. Phys. 125, 230901 (2019).

    Article  ADS  Google Scholar 

  110. Errando-Herranz, C. et al. Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters. ACS Photonics 8, 1069–1076 (2021).

    Article  Google Scholar 

  111. Deotare, P. B., McCutcheon, M. W., Frank, I. W., Khan, M. & Lončar, M. High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009).

    Article  ADS  Google Scholar 

  112. Chiu, M.-H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).

    Article  ADS  Google Scholar 

  113. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  ADS  Google Scholar 

  114. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  ADS  Google Scholar 

  115. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  Google Scholar 

  116. Hanbicki, A. T. et al. Indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719–4726 (2018).

    Article  Google Scholar 

  117. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    Article  ADS  Google Scholar 

  118. Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    Article  ADS  Google Scholar 

  119. Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    Article  ADS  Google Scholar 

  120. Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. NPJ 2D Mater. Appl. 4, 8 (2020).

    Article  Google Scholar 

  121. Kang, J., Li, J., Li, S.-S., Xia, J.-B. & Wang, L.-W. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485–5490 (2013).

    Article  ADS  Google Scholar 

  122. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  ADS  Google Scholar 

  123. Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    Article  Google Scholar 

  124. Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).

    Article  ADS  Google Scholar 

  125. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  ADS  Google Scholar 

  126. Zhang, C. et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    Article  ADS  Google Scholar 

  127. Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).

    Article  ADS  Google Scholar 

  128. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article  ADS  Google Scholar 

  129. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article  Google Scholar 

  130. Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

    Article  Google Scholar 

  131. Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    Article  ADS  Google Scholar 

  132. Baek, H. et al. Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions. Nat. Nanotechnol. 16, 1237–1243 (2021).

    Article  ADS  Google Scholar 

  133. Brotons-Gisbert, M. et al. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Phys. Rev. X 11, 031033 (2021).

    Google Scholar 

  134. Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    Article  ADS  Google Scholar 

  135. Tran, T. T. et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys. Rev. Appl. 5, 034005 (2016).

    Article  ADS  Google Scholar 

  136. Nikolay, N. et al. Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride. Optica 6, 1084–1088 (2019).

    Article  ADS  Google Scholar 

  137. Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    Article  Google Scholar 

  138. Wigger, D. et al. Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Mater. 6, 035006 (2019).

    Article  Google Scholar 

  139. Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  ADS  Google Scholar 

  140. Noh, G. et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett. 18, 4710–4715 (2018).

    Article  ADS  Google Scholar 

  141. Nikolay, N. et al. Very large and reversible Stark-shift tuning of single emitters in layered hexagonal boron nitride. Phys. Rev. Appl. 11, 041001 (2019).

    Article  ADS  Google Scholar 

  142. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Article  ADS  Google Scholar 

  143. Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    Article  ADS  Google Scholar 

  144. Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    Article  Google Scholar 

  145. Turiansky, M. E., Alkauskas, A., Bassett, L. C. & Van de Walle, C. G. Dangling bonds in hexagonal boron nitride as single-photon emitters. Phys. Rev. Lett. 123, 127401 (2019).

    Article  ADS  Google Scholar 

  146. Choi, S. et al. Engineering and localization of quantum emitters in large hexagonal boron nitride layers. ACS Appl. Mater. Interfaces 8, 29642–29648 (2016).

    Article  Google Scholar 

  147. Hou, S. et al. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater. 5, 015010 (2017).

    Article  Google Scholar 

  148. Ziegler, J. et al. Deterministic quantum emitter formation in hexagonal boron nitride via controlled edge creation. Nano Lett. 19, 2121–2127 (2019).

    Article  ADS  Google Scholar 

  149. Fournier, C. et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 12, 3779 (2021).

    Article  ADS  Google Scholar 

  150. Yücel, O., Ateş, S. & Bek, A. Single-photon nanoantenna with in situ fabrication of plasmonic Ag nanoparticle at an hBN defect center. Preprint at arXiv https://arxiv.org/abs/2003.13824 (2020).

  151. Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article  ADS  Google Scholar 

  152. Schell, A. W., Takashima, H., Tran, T. T., Aharonovich, I. & Takeuchi, S. Coupling quantum emitters in 2D materials with tapered fibers. ACS Photonics 4, 761–767 (2017).

    Article  Google Scholar 

  153. Liebermeister, L. et al. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center. Appl. Phys. Lett. 104, 031101 (2014).

    Article  ADS  Google Scholar 

  154. Ahn, B.-H. et al. Direct fiber-coupled single photon source based on a photonic crystal waveguide. Appl. Phys. Lett. 107, 081113 (2015).

    Article  ADS  Google Scholar 

  155. Daveau, R. S. et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica 4, 178–184 (2017).

    Article  ADS  Google Scholar 

  156. Vogl, T., Lecamwasam, R., Buchler, B. C., Lu, Y. & Lam, P. K. Compact cavity-enhanced single-photon generation with hexagonal boron nitride. ACS Photonics 6, 1955–1962 (2019).

    Article  Google Scholar 

  157. Sontheimer, B. et al. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys. Rev. B 96, 121202 (2017).

    Article  ADS  Google Scholar 

  158. Konthasinghe, K. et al. Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter. Optica 6, 542–548 (2019).

    Article  ADS  Google Scholar 

  159. Dietrich, A. et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

    Article  ADS  Google Scholar 

  160. Dietrich, A., Doherty, M. W., Aharonovich, I. & Kubanek, A. Solid-state single photon source with Fourier transform limited lines at room temperature. Phys. Rev. B 101, 081401 (2020).

    Article  ADS  Google Scholar 

  161. Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  ADS  Google Scholar 

  162. Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).

    Article  ADS  Google Scholar 

  163. Yin, K. et al. An automated predictor for identifying transition states in solids. NPJ Comput. Mater. 6, 16 (2020).

    Article  ADS  Google Scholar 

  164. Ye, M., Seo, H. & Galli, G. Spin coherence in two-dimensional materials. NPJ Comput. Mater. 5, 44 (2019).

    Article  ADS  Google Scholar 

  165. White, S. J. U. et al. Quantum random number generation using a hexagonal boron nitride single photon emitter. J. Opt. 23, 01LT01 (2020).

    Article  Google Scholar 

  166. Mudd, G. W. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Sci. Rep. 6, 39619 (2016).

    Article  ADS  Google Scholar 

  167. Brotons-Gisbert, M. et al. Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap. Nano Lett. 16, 3221–3229 (2016).

    Article  ADS  Google Scholar 

  168. Andres-Penares, D., Cros, A., Martínez-Pastor, J. P. & Sánchez-Royo, J. F. Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability limitation. Nanotechnology 28, 175701 (2017).

    Article  ADS  Google Scholar 

  169. Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, e1705963 (2018).

    Article  Google Scholar 

  170. Lei, S. et al. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 13, 2777–2781 (2013).

    Article  ADS  Google Scholar 

  171. Late, D. J. et al. GaS and GaSe ultrathin layer transistors. Adv. Mater. 24, 3549–3554 (2012).

    Article  Google Scholar 

  172. Tonndorf, P. et al. Single-photon emitters in GaSe. 2D Mater. 4, 021010 (2017).

    Article  Google Scholar 

  173. Zhao, S. et al. Single photon emission from graphene quantum dots at room temperature. Nat. Commun. 9, 3470 (2018).

    Article  ADS  Google Scholar 

  174. Sandeep Kumar, G. et al. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale 6, 3384–3391 (2014).

    Article  ADS  Google Scholar 

  175. Zhao, H., Pettes, M. T., Zheng, Y. & Htoon, H. Site-controlled telecom single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021).

    Article  ADS  Google Scholar 

  176. Park, Y.-S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    Article  Google Scholar 

  177. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  ADS  Google Scholar 

  178. Pierini, S. et al. Highly photostable perovskite nanocubes: toward integrated single photon sources based on tapered nanofibers. ACS Photonics 7, 2265–2272 (2020).

    Article  Google Scholar 

  179. Gupta, S., Yang, J.-H. & Yakobson, B. I. Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett. 19, 408–414 (2019).

    Article  ADS  Google Scholar 

  180. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  181. Hsu, W.-T. et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 5, eaax7407 (2019).

    Article  ADS  Google Scholar 

  182. Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 127, 037402 (2021).

    Article  ADS  Google Scholar 

  183. Miao, S. et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun. 12, 3608 (2021).

    Article  ADS  Google Scholar 

  184. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Article  ADS  Google Scholar 

  185. Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    Article  Google Scholar 

  186. Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017).

    Article  ADS  Google Scholar 

  187. Wang, K. et al. Electrical control of charged carriers and excitons in atomically thin materials. Nat. Nanotechnol. 13, 128–132 (2018).

    Article  ADS  Google Scholar 

  188. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  ADS  Google Scholar 

  189. Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. 6, eaba1830 (2020).

    Article  ADS  Google Scholar 

  190. Hu, G. et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv. 6, eaba5029 (2020).

    Article  ADS  Google Scholar 

  191. Liao, M. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 11, 2153 (2020).

    Article  ADS  Google Scholar 

  192. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  ADS  Google Scholar 

  193. Masubuchi, S. et al. Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. NPJ 2D Mater. Appl. 4, 3 (2020).

    Article  Google Scholar 

  194. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    Article  ADS  Google Scholar 

  195. Arakawa, Y. & Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview. Appl. Phys. Rev. 7, 021309 (2020).

    Article  ADS  Google Scholar 

  196. Fryett, T. K. et al. Encapsulated silicon nitride nanobeam cavity for hybrid nanophotonics. ACS Photonics 5, 2176–2181 (2018).

    Article  Google Scholar 

  197. Wang, L., Zhou, X., Yang, S., Huang, G. & Mei, Y. 2D-material-integrated whispering-gallery-mode microcavity. Photonics Res. 7, 905–916 (2019).

    Article  Google Scholar 

  198. Maiti, R. et al. Loss and coupling tuning via heterogeneous integration of MoS2 layers in silicon photonics. Opt. Mater. Express 9, 751–759 (2019).

    Article  ADS  Google Scholar 

  199. Shiue, R.-J. et al. Active 2D materials for on-chip nanophotonics and quantum optics. Nanophotonics 6, 1329–1342 (2017).

    Article  Google Scholar 

  200. Fröch, J. E. et al. Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities. ACS Nano 14, 7085–7091 (2020).

    Article  Google Scholar 

  201. Wu, Y.-C. et al. Up- and down-conversion between intra- and intervalley excitons in waveguide coupled monolayer WSe2. ACS Nano 14, 10503–10509 (2020).

    Article  Google Scholar 

  202. Lee, B. et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 17, 4541–4547 (2017).

    Article  ADS  Google Scholar 

  203. Iff, O. et al. Purcell-enhanced single photon source based on a deterministically placed WSe2 monolayer quantum dot in a circular Bragg grating cavity. Nano Lett. 21, 4715–4720 (2021).

    Article  ADS  Google Scholar 

  204. Sprengers, J. P. et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011).

    Article  ADS  Google Scholar 

  205. Münzberg, J. et al. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica 5, 658–665 (2018).

    Article  ADS  Google Scholar 

  206. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    Article  ADS  Google Scholar 

  207. Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 14, 256–262 (2020).

    Article  ADS  Google Scholar 

  208. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  ADS  Google Scholar 

  209. Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

    Article  Google Scholar 

  210. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article  MathSciNet  Google Scholar 

  211. Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019).

    Article  ADS  Google Scholar 

  212. Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article  ADS  Google Scholar 

  213. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  214. Gilardoni, C. M. et al. Spin-relaxation times exceeding seconds for color centers with strong spin–orbit coupling in SiC. New J. Phys. 22, 103051 (2020).

    Article  ADS  Google Scholar 

  215. Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

    Article  ADS  Google Scholar 

  216. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  217. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  218. Winik, R. et al. On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade. Phys. Rev. B 95, 235435 (2017).

    Article  ADS  Google Scholar 

  219. Dinparasti Saleh, H. et al. Towards spontaneous parametric down conversion from monolayer MoS2. Sci. Rep. 8, 3862 (2018).

    Article  ADS  Google Scholar 

  220. Marini, L., Helt, L. G., Lu, Y., Eggleton, B. J. & Palomba, S. Constraints on downconversion in atomically thick films. J. Opt. Soc. Am. B 35, 672–679 (2018).

    Article  ADS  Google Scholar 

  221. Lee, K. F. et al. Photon-pair generation with a 100 nm thick carbon nanotube film. Adv. Mater. 29, 1605978 (2017).

    Article  Google Scholar 

  222. Okoth, C., Cavanna, A., Santiago-Cruz, T. & Chekhova, M. V. Microscale generation of entangled photons without momentum conservation. Phys. Rev. Lett. 123, 263602 (2019).

    Article  ADS  Google Scholar 

  223. Santiago-Cruz, T., Sultanov, V., Zhang, H., Krivitsky, L. A. & Chekhova, M. V. Entangled photons from subwavelength nonlinear films. Opt. Lett. 46, 653–656 (2021).

    Article  ADS  Google Scholar 

  224. Wang, Y. et al. Difference frequency generation in monolayer MoS2. Nanoscale 12, 19638–19643 (2020).

    Article  Google Scholar 

  225. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    Article  ADS  Google Scholar 

  226. Yang, F. et al. Tunable second harmonic generation in twisted bilayer graphene. Matter 3, 1361–1376 (2020).

    Article  Google Scholar 

  227. Du, L., Dai, Y. & Sun, Z. Twisting for tunable nonlinear optics. Matter 3, 987–988 (2020).

    Article  Google Scholar 

  228. Alexander, K., Savostianova, N. A., Mikhailov, S. A., Kuyken, B. & Van Thourhout, D. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics 4, 3039–3044 (2017).

    Article  Google Scholar 

  229. Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photonics 12, 430–436 (2018).

    Article  ADS  Google Scholar 

  230. Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

    Article  ADS  Google Scholar 

  231. Dai, Y. et al. Electrical control of interband resonant nonlinear optics in monolayer MoS2. ACS Nano 14, 8442–8448 (2020).

    Article  Google Scholar 

  232. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  ADS  Google Scholar 

  233. Sun, Z. Electrically tuned nonlinearity. Nat. Photonics 12, 383–385 (2018).

    Article  ADS  Google Scholar 

  234. Bogusławski, J. et al. Graphene actively mode-locked lasers. Adv. Funct. Mater. 28, 1801539 (2018).

    Article  Google Scholar 

  235. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

  236. Chen, K. et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 13, 754–759 (2019).

    Article  ADS  Google Scholar 

  237. Zuo, Y. et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol. 15, 987–991 (2020).

    Article  ADS  Google Scholar 

  238. Jiang, B. et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light Sci. Appl. 9, 63 (2020).

    Article  ADS  Google Scholar 

  239. Gan, X.-T. et al. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. Light Sci. Appl. 7, 17126 (2018).

    Article  Google Scholar 

  240. Marino, G. et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6, 1416–1422 (2019).

    Article  ADS  Google Scholar 

  241. Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 20, 5309–5314 (2020).

    Article  ADS  Google Scholar 

  242. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  ADS  Google Scholar 

  243. Guo, X. et al. Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Adv. Mater. 32, 1907105 (2020).

    Article  Google Scholar 

  244. Du, L. et al. Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. Phys. Rev. B 99, 205410 (2019).

    Article  ADS  Google Scholar 

  245. Yang, X. et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon–phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 28, 2931–2938 (2016).

    Article  Google Scholar 

  246. Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    Article  ADS  Google Scholar 

  247. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article  ADS  Google Scholar 

  248. Wild, D. S., Shahmoon, E., Yelin, S. F. & Lukin, M. D. Quantum nonlinear optics in atomically thin materials. Phys. Rev. Lett. 121, 123606 (2018).

    Article  ADS  Google Scholar 

  249. Zhou, Y. et al. Controlling excitons in an atomically thin membrane with a mirror. Phys. Rev. Lett. 124, 027401 (2020).

    Article  ADS  Google Scholar 

  250. Horng, J. et al. Perfect absorption by an atomically thin crystal. Phys. Rev. Appl. 14, 024009 (2020).

    Article  ADS  Google Scholar 

  251. Zeytinoğlu, S. & İmamoğlu, A. Interaction-induced photon blockade using an atomically thin mirror embedded in a microcavity. Phys. Rev. A 98, 051801 (2018).

    Article  ADS  Google Scholar 

  252. Wang, Y., Jöns, K. D. & Sun, Z. Integrated photon-pair sources with nonlinear optics. Appl. Phys. Rev. 8, 011314 (2021).

    Article  ADS  Google Scholar 

  253. Gullans, M., Chang, D. E., Koppens, F. H., Garcia de Abajo, F. J. & Lukin, M. D. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

    Article  ADS  Google Scholar 

  254. Chai, Z. et al. Ultrafast all-optical switching. Adv. Opt. Mater. 5, 1600665 (2017).

    Article  Google Scholar 

  255. Jablan, M. & Chang, D. E. Multiplasmon absorption in graphene. Phys. Rev. Lett. 114, 236801 (2015).

    Article  ADS  Google Scholar 

  256. Sun, L. & Jiang, C. Electrically controllable single-photon switch based on graphene. Appl. Opt. 54, 5650–5656 (2015).

    Article  ADS  Google Scholar 

  257. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  Google Scholar 

  258. Fritz, L. & Vojta, M. The physics of Kondo impurities in graphene. Rep. Prog. Phys. 76, 032501 (2013).

    Article  ADS  Google Scholar 

  259. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  260. Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    Article  ADS  Google Scholar 

  261. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    Article  ADS  Google Scholar 

  262. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  263. Baier, M. H. et al. Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett. 84, 648–650 (2004).

    Article  ADS  Google Scholar 

  264. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  265. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  266. Faraon, A. et al. Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13, 055025 (2011).

    Article  ADS  Google Scholar 

  267. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Article  ADS  Google Scholar 

  268. Regelman, D. V. et al. Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics. Phys. Rev. Lett. 87, 257401 (2001).

    Article  ADS  Google Scholar 

  269. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  ADS  Google Scholar 

  270. Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

    Article  ADS  Google Scholar 

  271. Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  ADS  Google Scholar 

  272. Batalov, A. et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys. Rev. Lett. 100, 077401 (2008).

    Article  ADS  Google Scholar 

  273. Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010).

    Article  ADS  Google Scholar 

  274. Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    Article  ADS  Google Scholar 

  275. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  276. Togan, E., Chu, Y., Imamoglu, A. & Lukin, M. D. Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit. Nature 478, 497–501 (2011).

    Article  ADS  Google Scholar 

  277. Hausmann, B. J. M. et al. Integrated diamond networks for quantum nanophotonics. Nano Lett. 12, 1578–1582 (2012).

    Article  ADS  Google Scholar 

  278. Chejanovsky, N. et al. Quantum light in curved low dimensional hexagonal boron nitride systems. Sci. Rep. 7, 14758 (2017).

    Article  ADS  Google Scholar 

  279. Mahan, G. D. Many-Particle Physics (Plenum, 1993).

  280. Efetov, D. K. & Kim, P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  ADS  Google Scholar 

  281. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).

    Article  Google Scholar 

  282. Shree, S. et al. Observation of exciton-phonon coupling in MoSe2 monolayers. Phys. Rev. B 98, 035302 (2018).

    Article  ADS  Google Scholar 

  283. Vuong, T. Q. P. et al. Phonon-photon mapping in a color center in hexagonal boron nitride. Phys. Rev. Lett. 117, 097402 (2016).

    Article  ADS  Google Scholar 

  284. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  ADS  Google Scholar 

  285. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  286. Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  ADS  Google Scholar 

  287. Hu, Z. et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018).

    Article  Google Scholar 

  288. Lin, Y.-C. et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 6, 6736 (2015).

    Article  ADS  Google Scholar 

  289. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  ADS  Google Scholar 

  290. Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

    Article  ADS  Google Scholar 

  291. Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017).

    Article  ADS  Google Scholar 

  292. Katsumi, R., Ota, Y., Kakuda, M., Iwamoto, S. & Arakawa, Y. Transfer-printed single-photon sources coupled to wire waveguides. Optica 5, 691–694 (2018).

    Article  ADS  Google Scholar 

  293. Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

    Article  ADS  Google Scholar 

  294. Lombardi, P. et al. Photostable molecules on chip: integrated sources of nonclassical light. ACS Photonics 5, 126–132 (2018).

    Article  Google Scholar 

  295. Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 031009 (2015).

    Google Scholar 

  296. Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    Article  ADS  Google Scholar 

  297. Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics 10, 727–732 (2016).

    Article  ADS  Google Scholar 

  298. Schuck, C. et al. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat. Commun. 7, 10352 (2016).

    Article  ADS  Google Scholar 

  299. Bogdanov, S., Shalaginov, M. Y., Boltasseva, A. & Shalaev, V. M. Material platforms for integrated quantum photonics. Opt. Mater. Express 7, 111–132 (2017).

    Article  ADS  Google Scholar 

  300. Poot, M., Schuck, C., Ma, X.-S., Guo, X. & Tang, H. X. Design and characterization of integrated components for SiN photonic quantum circuits. Opt. Express 24, 6843–6860 (2016).

    Article  ADS  Google Scholar 

  301. Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

    Article  ADS  Google Scholar 

  302. Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme (grant nos. 820423, 862721 and 965124), the ERC (no. 725920), the Academy of Finland (grants nos. 314810, 333982, 336144 and 336818), Aalto Centre of Quantum Engineering, the China Scholarship Council, the EPSRC (EP/P029892/1; EP/S000550/1; EP/S000550/1) and the Leverhulme Trust (RPG-2019-388). M.B.-G. thanks the Royal Society for a University Research Fellowship. B.D.G. was supported by a Wolfson Merit Award from the Royal Society and a Chair in Emerging Technology from the Royal Academy of Engineering. Z.S. thanks the other Aalto group members who initiated this Review’s writing that was later completely led by B.D.G.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Brian D. Gerardot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Weibo Gao, Christian Schneider and Milos Toth for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Spectral diffusion

Changes in the energy levels of an emitter due to electrostatic noise in the emitter’s environment.

Blinking

Random switching of bright and dark states of the emitter.

Transform limit

The ideal coherence limit: T2 = 2T1, where T2 and T1 are the emitter’s coherence time and lifetime, respectively.

Fine-structure splitting

(FSS). Splitting of exciton energy levels caused by spin interactions and/or wavefunction asymmetry.

Dark (free) exciton

In a dark exciton, the spins of the electron and the hole are parallel and spontaneous emission is forbidden due to spin momentum conservation.

DC Stark tuning

Tuning of emission spectra using an external electric field.

Plasmonic cavities

Cavities where the light is enhanced by the interaction of surface plasmons.

Purcell enhancement

Environmental enhancement of the light emission rate of a quantum system, typically caused by a resonant cavity.

Slot waveguide

A waveguide, where light is confined between two slabs of high-refractive-index materials.

Interlayer excitons

Electron–hole Coulomb bound states between electrons and holes spatially separated in different monolayers.

Debye–Waller factor

Describes the magnitude of thermal vibrations in a crystalline lattice and is used as a measure for the structural disorder of material.

Autocorrelation measurements

Second-order correlation measurement used to measure the time delay between two successive photons.

Cross-correlation measurements

Correlation measurement of two different signals.

Fermi–Hubbard model

Interaction model of fermions in a lattice.

Bose–Hubbard

Interaction model of bosons on a lattice.

Hong–Ou–Mandel interference

This bosonic interference describes the situation where two photons approach a 50/50 beam splitter from different input ports. If the photons are indistinguishable and they enter the beam splitter at the same time, both photons will exit together in a superposition from the output ports of the beam splitter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turunen, M., Brotons-Gisbert, M., Dai, Y. et al. Quantum photonics with layered 2D materials. Nat Rev Phys 4, 219–236 (2022). https://doi.org/10.1038/s42254-021-00408-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00408-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing