
MANUAL

Release 09.2023

T32Start

T32Start

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Debugger Getting Started .. 

 T32Start .. 1

 History ... 4

 Introduction .. 5

 Features 5

 Quick Start .. 7

 T32Start User Interface .. 8

 Buttons 8

 Context Sensitive Menu 9

 Mouse Actions 11

 Configuration Tree: Settings ... 12

 Global Settings 12

 Default Advanced Settings 13

 Paths 13

 License 14

 Interfaces 15

 Display Settings 18

 Startup Script 19

 Configuration Container and Configuration .. 21

 Podbus Device Chain 21

 Connection Type 24

 Target Option 27

 MicroTrace 28

 Software-only Debugging (Host MCI) 29

 Debug Environment for Setup 1 (Single Instance) 31

 Debug Environment for Setup 2 (Integrated Server) 32

 Debug Environment for Setup 3 (Dedicated Server) 33

 References to Tree Items ... 36

 Configuration Examples .. 37

 Hardware-based TRACE32 Tools 37

 Single Core Debugging and Tracing (MicroTrace) 37

 Multicore Debugging and Tracing (MicroTrace) 39

 Single Core Debugging (USB 3) 41
T32Start | 2©1989-2023 Lauterbach

 Single Core Debugging and Tracing 44

 Multicore Debugging (heterogenous AMP) 47

 Multiprocessor Debugging 51

 TRACE32 Software-only Tools 54

 Instruction Set Simulator 54

 Command Line Arguments ... 57

 Error Messages .. 58
T32Start | 3©1989-2023 Lauterbach

T32Start

Version 09-Oct-2023

History

22-Dec-20 Revised manual.
T32Start | 4©1989-2023 Lauterbach

Introduction

The main objective of T32Start is to ease the setup of TRACE32 debug environments.

To start a TRACE32 instance a configuration file is required. The configuration file defines primarily:

• The host interface that is used to connect the TRACE32 debug hardware to the PC. Or
alternatively the interface that is used by the TRACE32 Software-only tool.

• The environment variables that are required by the TRACE32 instance.

Please refer to “Configuration File” in TRACE32 Installation Guide, page 35 (installation.pdf) for more
information about the syntax of the configuration file.

T32Start allows the user to do this setup in a graphical user interface instead of writing a configuration file
manually. T32Start will generate a temporary configuration file based on the selected options and will set up
the corresponding TRACE32 start parameters. The created configuration file as well as the command line
options can also be viewed by the user.

Features

T32Start offers the following features for newcomers:

• Create a basic TRACE32 configuration for hardware-based TRACE32 tools (please refer to the
configuration examples of the chapter “Hardware-based TRACE32 Tools” (app_t32start.pdf)).

• Create a basic TRACE32 configuration for TRACE32 Software only tools.

• Define a startup script that is executed when the TRACE32 instance is started.

• Specify the device names of the PowerDebug module.

• Specify the IP address of the TRACE32 PowerDebug module.

T32Start is only supported for Windows.

It can run on Linux and MacOSx using “WINE”.
T32Start | 5©1989-2023 Lauterbach

T32Start offers the following features for power users:

• Manage different TRACE32 configurations.

• Manage different TRACE32 configurations for different TRACE32 software versions.

• Configure the socket interface for the remote API in C (“API for Remote Control and JTAG
Access in C” (api_remote_c.pdf)) or Python module PYRCL (“Controlling TRACE32 via Python
3” (app_python.pdf)).

• Configure the socket interface for controlling TRACE32 using the GDB protocol (“TRACE32 as
GDB Back-End” (backend_gdb.pdf)).

• Configure Target Communication Framework (TCF) to control TRACE32 from within Eclipse
(“TRACE32 as TCF Agent” (app_tcf_setup.pdf)).

• Configure the remote control for POWER DEBUG INTERFACE / USB (TCPUSB) (“TRACE32
Installation Guide” (installation.pdf)).

• Configure a License Pool Server for TRACE32 Software-Only tools that use AMP debugging
(“Floating Licenses” (floatinglicenses.pdf)).

• Configure the TRACE32 instance for debugging and tracing a dedicated core via a PODBUS
device chain.
T32Start | 6©1989-2023 Lauterbach

Quick Start

The executable t32start.exe is copied during the installation to the TRACE32 system directory. To start
T32Start, do one of the following:

• Click the Windows Start button, and then select T32Start.

• Navigate to the TRACE32 system directory (by default C:\T32\), sub-folders bin\windows or
bin\windows64, and then double-click the t32start.exe.

Example: C:\T32\bin\windows64\t32start.exe

When T32Start is started the first time, the following basic settings are displayed:
T32Start | 7©1989-2023 Lauterbach

T32Start User Interface

A set of often used functions is provided by buttons at the right side of the T32Start window [A]. Their action
is executed in the context of the selected tree item except the global functions Instances…, Save and Exit
and Save. If a function cannot be executed for the selected item the button is disabled.

Every tree item has additionally a context menu [B] with functions that can be performed on it and its sub-
items.

Buttons

Start Starts the selected configuration.

Add... Adds an item to the selected node.

Delete Deletes the selected node.

Up Moves up the selected node.

Down Moves down the selected node.

Instances... Opens a new window that displays details about all started TRACE32 instances.

Save and Exit Saves modifications and exits T32Start.

Save Saves modifications.

Help Opens this document.

A

B

T32Start | 8©1989-2023 Lauterbach

Context Sensitive Menu

Depending on the selected item, a subset of the following options is available:

Add Adds an item to the selected node.

Start Starts the selected node.

Up Moves up the selected node.

Down Moves down the selected node.

File Every tree item can be loaded and stored into or from a *.ts2 file. Analog to the
copy and paste function, the loaded data can replace a tree item or it can be added
as sub-item. At the top level node the function provides a method to backup or
restore the complete Configuration Tree.

Clipboard Every tree item has menu items for transferring data from and to the Clipboard. The
data is handled as ASCII text.
In contrast to the mouse actions, two methods for the paste command can be
chosen. Paste and add will add the clipboard data as sub-items of the selected
node. Paste and replace will replace the tree item.

Delete Deletes selected node.

Clear
Subitems

Clears all sub-items of selected node.

Select Item by
ID...

Opens a window that displays the ID of each selected item. Refer to
“References to Tree Items”, page 36 for more information.

Reset • Reset T32 History: resets the TRACE32 history. Refer to the
description of the commands HISTory and AutoSTOre for more
information.

• Reset to Default Advanced Settings: copies the settings from
Default Advanced Settings to the node Advanced Settings of the
selected configuration.

• Reset Paths to Default Advanced Settings: copies the settings
from Default Advanced Settings > Paths to the node Advanced
Settings > Paths of the selected configuration.

• Reset unused Built-in Start-up Scripts.

Setup Register T32Start as default program for .ts2 file extension.
T32Start | 9©1989-2023 Lauterbach

Show Start
Environment

Opens a windows displaying the start parameter as a batch job as well as the
configuration file. The Batch Job field shows the DOS command script which can
be used in order to start the TRACE32 instance. The Configuration File field
displays the configuration file contents. The shown file names are valid also after
closing T32Start.

Create Start
Link...

Opens a dialog in order to create links to T32Start on the Windows Desktop or
Windows Start Menu:

After the link is executed, T32Start will appear and start the connected item and
all sub-items. After starting, T32Start will be closed automatically based on the
settings.

Create Config
Files

Creates a configuration file in the temporary directory. The Information window
will pop-up displaying the file name and path of the created configuration file.

T32Start | 10©1989-2023 Lauterbach

Mouse Actions

The tree items can also be modified by mouse actions with drag & drop.

Actions with two Items involved

The possible actions take affect only on the two involved source and destination item. The matrix below
shows the four cases that are possible in this case. The shift key switches between the move and copy
mode. The append and replace mode is derived by the program automatically depending on the concrete
situation.

Deep Replace

It is possible to replace none-deletable sub-trees by a template tree. This can be done by dragging the
template tree and dropping it on the root of the tree, where the compatible sub-trees are to be replaced.

CopyMove

Replace

Add

Source

Destination

Deep Replace

of Working Path

in Example Configuration
T32Start | 11©1989-2023 Lauterbach

Configuration Tree: Settings

The Configuration Tree is the root of the tree and contains Configurations or Configuration Containers.
Both item types can be created and deleted from the tree. The Configuration Tree does also contain the
Settings tree, where default settings are stored.

For details on Configuration Containers and Configurations refer to the chapter “Configuration Container
and Configuration” in T32Start, page 21 (app_t32start.pdf).

This chapter introduces the items of the Setting Tree.

Global Settings

The Global Settings tree contains general settings.

Global Settings Description

Fast start When set to yes, the next TRACE32 PowerView instance within a
Configuration is directly started without an additional delay.

Delay between start of
multiple instances

Defines the wait time in seconds between the start of two TRACE32
instances. This delay is only used if Fast start is set to no.

Replace empty paths When set to by program directory, T32Start suggests a TRACE32
installation in the current working directory whenever an item in the
Advanced Setting sub-tree is left empty. The option by standard
directory just suggests the settings from the Default Advanced
Settings.

Saving Location / Target
Type

Target Type Registry will store the entire Configuration Tree into
the Windows Registry under the HKEY_CURRENT_USER key.

Saving Location / File When Target Type is File, T32Start stores the Configuration Tree
to the specified file. This will consume less memory in the registry
and makes it possible to share the settings between different users.
Evironment variables quoted by % characters are evaluated.
The current configuration files can specified temporarly by
command line arguments. Refer to “Command Line Arguments”,
page 57 for more information.
The file t32start.default.ts2 is used as current configuration file
when the file exists in the current working directory or in the system
directoy of T32Start.
T32Start | 12©1989-2023 Lauterbach

Default Advanced Settings

Items with a Lauterbach logo on their left side represent TRACE32 instances. TRACE32 instances need a
number of Advanced Settings. Every time a new instance is created, the Advanced Settings are copied
from the Default Advanced Settings located in the Settings tree.

Paths

Item Description

WorkingPath Active directory after starting the TRACE32 instance. T32Start will change to this
directory before TRACE32 PowerView is started. The selected directory will thus
be the current working directory in the started TRACE32 PowerView instance.
You can display this directory in TRACE32 PowerView using the command PWD.

SystemPath Directory where the executable and system files of TRACE32 are located.

TempPath Directory, where temporary files can be created. The source files are copied to
the temporary directory while debugging.

Copy from template
T32Start | 13©1989-2023 Lauterbach

Windows environment variables can be assigned to tree items designed to contain paths and file names. For
example, if the Windows environment variable %TEMP% is assigned to the tree item TempPath, then
TRACE32 and other applications share the user’s default temporary directory. In addition to the Windows
environment variables, there is the T32Start environment variable %WORKINGDIR%. It points to the initial
working directory of T32Start.

License

The License node defines the floating license parameters for software-only TRACE32 tools. Please refer to
“Floating Licenses” (floatinglicenses.pdf) for more information.

HelpPath Directory where the pdf-files for the TRACE32 online help are located.

LicenseFile Directory where a license file can be located. A license file provides the software
maintenance keys.

Use only 32-bit
executable

If set to yes, T32Start will start the 32-bit executable located under
bin\windows instead of the 64-bit executable located under bin\windows64.
This could be e.g. needed if a 32-bit DLL has to be loaded in TRACE32
PowerView.

Item Description

RLMPort
RLMServer

The Floating License Client (RLM Client) needs to know which (RLM) Server to
contact and which port number should be used to get the license.

RLMFile Sets a license file (*.lic) which includes the floating license parameters.

Pool Port TCP/IP port for license pool. Refer to the chapter “Floating License Pools” in
Floating Licenses, page 19 (floatinglicenses.pdf) for more information.

PodBusDevice Licenses the TRACE32 Simulator using a connected hardware-based debugger.
This option is only available for the Simulator.
Refer to “Instruction Set Simulator”, page 54 for more information.
T32Start | 14©1989-2023 Lauterbach

Interfaces

Defines the communication parameters between multiple TRACE32 PowerView user interfaces as well as
the parameters to connect to TRACE32 PowerView using an external program via Remote API, GDB or
TCF.

API Port

Defines the parameters for the TRACE32 Remote API for TCP/IP and UDP. Even if the configuration is
performed for both protocols, it is recommended to use TCP/IP. Please refer to “API for Remote Control
and JTAG Access in C” (api_remote_c.pdf) for more information and “Controlling TRACE32 via Python
3” (app_python.pdf).

Item Description

Use Port Lets the TRACE32 instance listen to the UDP/TCP port. Starting from the
TRACE32 release 09.2020, the API supports per default TCP socket
streams. Previous TRACE32 versions only support a communication via UDP
sockets.

Use Auto
Increment Port

To ensure unique port numbers it is possible to assign an automatically created
port number to the TRACE32 instance. The port numbers are then unique within
a single Configuration.

Port Start Value When Use Auto Increment Port is false, the port number can be specified here.
If the TRACE32 instance is the first one to be started in the Configuration, Port
Start Value is the start value of the increasing port number set.

Port Value The field is read-only and displays the resulting port number.

Port Number Number of API connections to one single TRACE32 PowerView instance.

Max UDP
Packet Size

Specifies the maximum data package length for UDP. No operation for TCP.
T32Start | 15©1989-2023 Lauterbach

InterCom Port

Defines the parameter for start/stop synchronization and for the communication between multiple TRACE32
PowerView instances. Refer for more information to the description of the InterCom command group.

GDB Port

Define the parameters for controlling TRACE32 PowerView as GDB Back-End. Please refer to “TRACE32
as GDB Back-End” (backend_gdb.pdf) for more information.

Item Description

Use Port Lets the TRACE32 instance listen to the UDP port.

Name Assign a name to the TRACE32 PowerView interface. This name can then be
used with the InterCom commands. The selected name can be displayed in
TRACE32 PowerView using the SYnch.state command.

Use Auto
Increment Port

To ensure unique port numbers it is possible to assign an automatically created
port number to the TRACE32 instance. The port numbers are unique within a
single Configuration then.

Port Start Value When Use Auto Increment Port is false, the port number can be specified here.
If the TRACE32 instance is the first one to be started in the Configuration, Port
Start Value is the start value of the increasing port number set.

Port Value The field is read-only and displays the resulting port number.

Max UDP
Packet Size

Specifies the maximum data package length for UDP.

Item Description

Use Port Lets the TRACE32 instance listen to the UDP/TCP port.

Use Auto
Increment Port

To ensure unique port numbers it is possible to assign an automatically created
port number to the TRACE32 instance. The port numbers are unique within a
single Configuration then.
T32Start | 16©1989-2023 Lauterbach

TCF Port

Defines the parameter for controlling TRACE32 PowerView via Target Communication Framework (TCF)
from an Eclipse-based interface. Please refer to “TRACE32 as TCF Agent” (app_tcf_setup.pdf) for more
information.

Port Start Value When Use Auto Increment Port is false, the port number can be specified here.
If the TRACE32 instance is the first one to be started in the Configuration, Port
Start Value is the start value of the increasing port number set.

Port Value The field is read-only and displays the resulting port number.

Protocol TCP (default) or UDP.

Max UDP
Packet Size

Specifies the maximum data package length for UDP. No operation for TCP.

Item Description

Use Port Lets the TRACE32 instance listen to the TCP port.

Auto Discovery Enable/disable the TCF discovery. If the discovery is disabled, a TCF port
number must be specified. The TCF discovery is a mechanism where agents
advertise their peers by sending UDP packets to other agents.

Use Auto
Increment Port

To ensure unique port numbers it is possible to assign an automatically created
port number to the TRACE32 instance. The port numbers are unique within a
single Configuration then.

Port Start Value When Use Auto Increment Port is false, the port number can be specified here.
If the TRACE32 instance is the first one to be started in the Configuration, Port
Start Value is the start value of the increasing port number set.

Port Value The field is read-only and displays the resulting port number.
T32Start | 17©1989-2023 Lauterbach

Display Settings

Item Description

Title Sets the window title of the TRACE32 instance. Generic placeholders are
specified to include details such as the core architecture (%T) or the device
name (%D) into the tille. A list of all available placeholder is displayed, when the
Title item is selected.

Font Size Selects the used font size used by the TRACE32 instance (Normal, Small or
Large).

Clear Type Yes: Cleartype display of fonts is switched ON if it is supported by the OS. The
monospaced truetype font "Lucida Console" is used as basic font and should be
installed.
No: Cleartype display of fonts is switched OFF. TRACE32 fonts are used
(t32font.fon).

Palette Sets up display theme.
Default: use the default TRACE32 PowerView theme.
Keep: use the last selected theme.
Dark: use the TRACE32 PowerView dark theme.

Full Screen If set to true, the TRACE32 instance is started in full screen mode.

Iconic If true, the TRACE32 instance is iconic after starting.

WindowMode The following TRACE32 window modes are available: FDI, MDI, and MTI.
For descriptions of the window modes, click the blue hyperlinks.

Language Set up the language used by TRACE32 (English or Japanese).
T32Start | 18©1989-2023 Lauterbach

Startup Script

When a TRACE32 instance starts, the PRACTICE script autostart.cmm is executed, which then calls the
following scripts:

• system-settings.cmm (from the TRACE32 system directory, usually C:\t32)

• user-settings.cmm (from the user settings directory: on Windows %APPDATA%\TRACE32 or
~/.trace32 otherwise)

• work-settings.cmm (from the current working directory)

In T32Start you can specify an additional PRACTICE script which is automatically started afterwards.

Example:

This example is for demo purposes only. It assumes that the following settings are made in the
Startup Script tree item:

• Source: File

• Parameters: "Hello World" %COMPUTERNAME%

• File: c:\t32\demo-start-up-script.cmm

Item Description

Source T32Start supports two types of start-up scripts:
• File
• Built-in Script
When File is chosen as Source, the script assigned to the File item will be
executed.

File If the Source item is set to File, specify the start-up script here.

Parameters Set the parameters that are passed to the command script from File or Built-in
Script. The parameter syntax is specified by the PRACTICE command ENTRY.

Built-in Script The start-up script can be edited and stored directly in T32Start. Select the item
and press the Edit button to edit the script.

Safe Start Suppresses the automatic execution of any PRACTICE script after starting
TRACE32. This allows you to test or debug the scripts that are normally exe-
cuted automatically.
T32Start | 19©1989-2023 Lauterbach

When TRACE32 is started via T32Start, the parameters are passed to the specified PRACTICE start-up
script (*.cmm). In this example, the script is programmed to open an AREA.view window in TRACE32 and
display the parameters.

%COMPUTERNAME% is an environment variable of Windows. For information about the environment variables
of T32Start, see “References to Tree Items”, page 36.

T32Start Start-up script (demo) TRACE32
T32Start | 20©1989-2023 Lauterbach

Configuration Container and Configuration

A Configuration is the top most startable item in the configuration tree. It contains other startable items e.g.
Podbus Device Chain or Simulator. When a Configuration is started, all startable sub-items are started
one after the other. The start order is defined by the numeration of the items. Numerated items can be
moved up or down with the buttons in the device specific pull-down menu.

It is possible to organize Configurations in Configuration Containers. Configuration Container can have
other Configuration Container as sub-items.

The following items can be added to a Configuration:

• Podbus Device Chain

• MicroTrace

• MCI Server / MCI Lib Debugger: refer to “Software-only Debugging (Host MCI)”, page 29.

• Simulator: TRACE32 Instruction Set Simulators.

• GDB Debugger: refer to “TRACE32 as GDB Front-End” (frontend_gdb.pdf) for more
information.

• Host Process Debugger: refer to “Native Process Debugger” (windows_debugger.pdf) for
more information.

• Serial ROM Monitor: allow to create a configuration for a TRACE32 serial ROM Monitor
(legacy).

• Arbitrary Program: allow to specify an external program that will be started together with the
TRACE32 instances.

• Note: Allows to add a comment or a note to the configuration.

• URL: Allows to add an HTML link to the configuration. This allows to easily link to information
relevant to the configuration.

Podbus Device Chain

Several LAUTERBACH devices can be arranged in a Podbus Device Chain. Podbus is a proprietary bus
used by LAUTERBACH to connect several devices. The order and type of LAUTERBACH devices has to be
modelled as sub-items in the Podbus Device Chain.

The Podbus Device Chain defines which LAUTERBACH devices are used for debugging.
T32Start | 21©1989-2023 Lauterbach

The correct name of your LAUTERBACH device can be read from the labelling.

The device which contains the host interface has to be the first device in the Podbus Device Chain. The Up
and Down buttons can be used to change the device order.

Labelling of the
LAUTERBACH device
T32Start | 22©1989-2023 Lauterbach

Every device has a menu item Replace by to exchange it by a another device. While the exchange takes
place the settings of the device are kept if possible.

Please note that LAUTERBACH devices which have a PODBUS SYNC connector (instead of PODBUS IN),
require an own power supply and connection to the host (USB or Ethernet). These devices cannot be added
to a single Podbus Device Chain. Each device has to be configured as a separate Podbus Device Chain.
The type of the PODBUS connection is printed on the device.

Debug devices can have a Core as sub-item. If a multicore (single device solution) debug environment is
configured, a debug device can have more than one core as sub-item.

There are devices (e.g. Power Probe, Power Integrator) that can be used as add-ons for a debug process. In
this case they are controlled by the TRACE32 instance assigned to the debug process for a specific Core.
Therefore these add-on devices has to be linked to the appropriate Core.
T32Start | 23©1989-2023 Lauterbach

In the following example the Power Probe is linked to the core assigned to the first Power Debug USB II.

The Power Probe and the Power Integrator can also be used as stand-alone devices. In this case an
appropriate host interface is required.

Connection Type

The Connection Type defines the interface to the host. The available connection types depend on the
selected device. Each TRACE32 device supports a subset of the following connection types:

• USB

• Ethernet

• Citrix

• USB Proxy: allows to communicate with a Power Debug Interface USB from a remote PC using the
command line tool t32tcpusb. Please refer for more information to “Example: Remote Control for
POWER DEBUG INTERFACE / USB” in TRACE32 Installation Guide, page 46 (installation.pdf).

• Parallel: only supported by the Podbus Parallel Interface.

• Podbus / Podbus Express: when more than one module is added to a single PodBus Device
Chain, Podbus or Podbus Express is the only available connection type, depending on the device
type, for devices which are not at the first position in the Podbus Device Chain.
T32Start | 24©1989-2023 Lauterbach

USB Settings

USB Proxy Settings

Please refer for more information to “Example: Remote Control for POWER DEBUG INTERFACE / USB”
in TRACE32 Installation Guide, page 46 (installation.pdf).

Option Description

Device Name If multiple devices are connection to the host via USB, you can address each
device using its device name.
You can display and change the device name in the TRACE32 PowerView user
interface using the menu Misc > Interface Config or via the TRACE32 com-
mand line using the IFCONFIG.state command.

Connection
Mode

Defines the behavior when a debugger module, connected via USB, is already in
use. Please note that this setting only have effect when the option Exclusive is
set to yes.

• Normal: a warning window appear. The connection is closed after
confirmation.

• Auto Abort: the TRACE32 executable will be closed automatically
without any user interaction.

• Query Connect: the user will be asked if the connection shall be
forced.

• Auto Connect: the TRACE32 executable will automatically take over
control over the debugger module, even if the debugger is already in
use.

• Auto Retry: the TRACE32 executable will wait until the current
TRACE32 session ends.

Please refer for more information to “Parameters for the PBI Driver with LAUT-
ERBACH Tools” in TRACE32 Installation Guide, page 44 (installation.pdf).

Exclusive Tells TRACE32 that there can be only one TRACE32 PowerView instance to
connect.

Option Description

Device Name If multiple devices are connection to the host via USB, you can address each
device using its device name.

Node Name IP address of PC that runs t32tcpusb.

Port Port number that was specified when t32tcpusb was started.
T32Start | 25©1989-2023 Lauterbach

Ethernet Settings

The options Max UDP Packet Size, Packet Burst Limitation, Compression and Delay can be useful when the
net work connection is slow or many routers are involved.

Parallel Port Settings

Option Description

Node Name / IP
Address

Network address for Podbus device. You display and edit these settings in the
TRACE32 PowerView user interface using the menu Misc > Interface Config or
via the TRACE32 command line using the
IFCONFIG.state command.

Port Sets the UDP communication port from the PC to the debugger module (default
is 20000). For AMP, all instances must use the same port number.

Host Port Defines the UDP communication port from the debugger module to the PC
(default is PORT+n).

Increment Port When set to yes, Port and Host Port will be automatically incremented for each
additional Core within a single Configuration.

Max UDP
Packet Size

The network can have a limited UDP packet size below the default of 1024 bytes.
Setup this value to limit the maximum packets the TRACE32 will send through
the network.

Packet Burst
Limitation

Sends only very small packets.

Compression If enabled reduces the packet size by compression.

Delay Delay time between sending two UDP packets. This can avoid packet order
changing when connection is established through internet.

Exclusive Tells TRACE32 that there can be only one TRACE32 PowerView instance to
connect.

Option Description

Port Port number e.g. for LPT2 the port number is 2.

Access Mode TRACE32 driver mode. PARPORT is the most recommended option. Choose
LPT if PARPORT does not work.

Connection
Mode

Parallel port interface mode according to your BIOS settings. Valid modes are:
Standard, ECP, EPP.
T32Start | 26©1989-2023 Lauterbach

PODBUS Interface Card for ISA

Target Option

The Target sub-item of a TRACE32 instance defines the executable to be started to support the target
architecture of the dedicated debug process.

Option Description

Port IO Communication Port
T32Start | 27©1989-2023 Lauterbach

MicroTrace

The TRACE32 µTrace for Cortex-M and RISC-V 32-bit processors can only be used a stand-alone device
and cannot be part of a PodBus Device Chain. The µTrace only offers a USB connection to the host. The
available USB settings are the same described under “USB Settings”, page 25.

One or multiple cores can be assigned to the µTrace. The only available architectures under Target are
Cortex-M and RISC-V.
T32Start | 28©1989-2023 Lauterbach

Software-only Debugging (Host MCI)

The Lauterbach TRACE32 Integrated Debug Environment supports debug sessions with and without
hardware. Without hardware means software-only debugging - without TRACE32 debugger hardware.

This chapter describes how to configure software-only debug environments in T32Start for use in
TRACE32 PowerView, the graphical user interface of TRACE32.

The TRACE32 PowerView instances can be set up in different ways.

1. A single TRACE32 PowerView instance runs on the same host as the back-end, see Setup 1. This
configuration can’t handle AMP debug scenarios.

2. Multiple TRACE32 PowerView instances run on the same host as the back-end, see Setup 2.

3. The TRACE32 PowerView instances run on a dedicated workstation; the back-end runs on another
host, see Setup 3.

The T32Start application assists you in configuring the desired setup. This way you do not need to manually
edit any config.t32 file. Simply choose the setup you need, and then follow the cross-reference at the bottom
of the chosen setup diagram.

Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

For step-by-step instructions on how to configure the above setup in T32Start, see “Debug Environment
for Setup 1 (Single Instance)”, page 31.

��������	�
���
	�����	�
�����
�	
������	
����

������	��

������	��������
T32Start | 29©1989-2023 Lauterbach

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

For step-by-step instructions on how to configure the above setup in T32Start, see “Debug Environment
for Setup 2 (Integrated Server)”, page 32.

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

For step-by-step instructions on how to configure the above setup in T32Start, see “Debug Environment
for Setup 3 (Dedicated Server)”, page 33.

��������	�
���
	�����	�
�����
�	
������	
����

������	����

������	��������

������	����

������	���

���

�����	
����

�����	
���

�����	
����

��������
��
�
���������
���

�
�����������	�

�����
�������	

������	�����

��	�����	�
���� !�
T32Start | 30©1989-2023 Lauterbach

Debug Environment for Setup 1 (Single Instance)

1. In the T32Start window, right-click Configuration Tree, point to Add, and then select
Configuration.

A tree item named Configuration<number> is displayed.

2. Press F2 to rename the new Configuration<number> tree item to a meaningful name, for
example, hostmci_setup1.

MCI Lib Debugger and Target

3. Right-click the renamed tree item, point to Add, and then select MCI Lib Debugger.

4. Click the little triangle next to MCI Lib Debugger to expand the tree node and navigate to Target.

5. Right-click Target, and then select the target name you want from the Target drop-down list.

This completes the steps for setup 1. The remaining steps depend on your project, see Advanced Settings
below.
T32Start | 31©1989-2023 Lauterbach

Advanced Settings

6. Configure the Advanced Settings as required by your environment.

For a description of the tree items under Advanced Settings, see “Advanced Settings and
Default Advanced Settings”.

7. Click Save when you are done.

Debug Environment for Setup 2 (Integrated Server)

1. In the T32Start window, right-click Configuration Tree, point to Add, and then select
Configuration.

A new tree item named Configuration<number> is displayed.

2. Press F2 to rename the tree item to a meaningful name, for example, hostmci_setup2.

MCI Server and Server Settings (Setup 2)

3. Right-click the renamed tree item, point to Add, and then select MCI Server.

4. Navigate from MCI Server to Server Settings by clicking the little triangles next to the tree items.

5. Under Server Settings, make these settings:

- Node Name / IP Address: Leave empty or type localhost

- Port: Type any free port number

- Dedicated: no
T32Start | 32©1989-2023 Lauterbach

MCI Server Debugger and Target (Setup 2)

6. Click the MCI Server tree item, point to Add, and then select MCI Server Debugger.

7. Click the little triangle next to MCI Server Debugger to navigate to Target.

8. Right-click Target, and then select the target name you want from the Target drop-down list.

9. Repeat the steps in this section for each MCI Server Debugger required for your project.

This completes the steps for setup 2. The remaining steps depend on your project, see Advanced Settings
below.

Advanced Settings (Setup 2)

10. For each MCI Server Debugger, configure the Advanced Settings as required for your project.
For a description of the tree items under Advanced Settings, see “Advanced Settings and
Default Advanced Settings”.

11. Click Save when you are done.

Debug Environment for Setup 3 (Dedicated Server)

1. In the T32Start window, right-click Configuration Tree, point to Add, and then select
Configuration.

A tree item named Configuration<number> is displayed.

2. Press F2 to rename the tree item to a meaningful name, for example, hostmci_setup3.
T32Start | 33©1989-2023 Lauterbach

MCI Server and Server Settings (Setup 3)

3. Right-click the renamed tree item, point to Add, and then select MCI Server.

4. Navigate from MCI Server to Server Settings by clicking the little triangles next to the tree items.

5. Under Server Settings, make these settings:

- Node Name / IP Address: Type IP address of the workstation where t32mciserver runs

- Port: Type any free port number

- Dedicated: yes

MCI Server Debugger and Target (Setup 3)

6. Click the MCI Server tree item, point to Add, and then select MCI Server Debugger.

7. Click the little triangle next to MCI Server Debugger to navigate to Target.

8. Right-click Target, and then select the target name you want from the Target drop-down list.

9. Repeat the steps in this section for each MCI Server Debugger required for your project.

This completes the steps for setup 3. The remaining steps depend on your project, see Advanced Settings
below.
T32Start | 34©1989-2023 Lauterbach

Advanced Settings (Setup 3)

10. For each MCI Server Debugger, configure the Advanced Settings as required for your project.

For a description of the tree items under Advanced Settings, see “Advanced Settings and
Default Advanced Settings”.

Click Save when you are done.
T32Start | 35©1989-2023 Lauterbach

References to Tree Items

Tree items can contain references to other tree items. The reference between a source item and a
destination item can be a relative or an absolute path.
For example, the reference %//Settings/CoreAdvancedOptions/Directories/SystemPath%
points to the tree item Default Advanced Settings > Paths > SystemPath. The substring // is interpreted
as root of the Configuration Tree. Delimiters are marked as single slash, and two dots return to the top
item.

To create a reference to another tree item in T32Start:

1. Select the destination item you want.

2. Click the Link to button to browse the entire tree.

3. Navigate to the source item you want.

4. Click OK to create the reference.

The absolute path of any item is displayed in the status line of T32Start. To copy the absolute path, right-click
the status line, and then select Copy ID.
T32Start | 36©1989-2023 Lauterbach

Configuration Examples

Hardware-based TRACE32 Tools

The correct name of your LAUTERBACH device can be read from the labelling.

Single Core Debugging and Tracing (MicroTrace)

The following example describes how to start a TRACE32 instance to debug and trace a Cortex-M via a
µTrace (MicroTrace).

Labelling of the
LAUTERBACH device

AU
X

PO
RT

 V
1

D
EB

U
G

/T
RA

CE
 W

H
IS

KE
R

μTRACE® FOR CORTEX®-M / USB 3

PC or
Workstation

USB
Cable

Target

M
IP

I2
0T

/M
IP

I1
0

C
on

ne
ct

or
T32Start | 37©1989-2023 Lauterbach

1. Add a new Configuration. Use a right-click to open the context menu.

2. Rename the Configuration by using the function key F2.

3. Add a MicroTrace to the configuration.

4. Assign a Core to the MicroTrace.

5. Open the Core branch to ospecify the target core.
T32Start | 38©1989-2023 Lauterbach

6. Optionally define a start-up script under Advanced Settings > Startup Script

7. Close the complete configuration tree and start the TRACE32 instance.

Multicore Debugging and Tracing (MicroTrace)

The following example describes how to start a TRACE32 instances to debug and trace a multiple core
Cortex-M via a µTrace (MicroTrace).

1. Add a new Configuration. Use a right-click to open the context menu.

2. Rename the Configuration by using the function key F2.
T32Start | 39©1989-2023 Lauterbach

3. Add a MicroTrace to the Configuration.

4. Assign the Core to the MicroTrace.

Open the Core branch to specify the target core.

Now the basic configuration is done.

5. Optionally define a start-up script under Advanced Settings > Startup Script
T32Start | 40©1989-2023 Lauterbach

6. Start the first TRACE32 instance.

7. Start the second TRACE32 instance from the first instance using the command
TargetSystem.NewInstance

As an alternative to using the TargetSystem.NewInstance command, you can assign a second core to
the MicroTrace and set Arm as target option. The advantage of using the command
TargetSystem.NewInstance is that the linkage of the TRACE32 instances is automatically set up and
does not need to be configured manually in T32Start.

Single Core Debugging (USB 3)

The following example describes how to start a TRACE32 instance to debug a Cortex-R (Arm architecture)
via a POWER DEBUG USB INTERFACE / USB 3. The configuration steps are the same if a Debug Cable or
a CombiProbe is connected to the PowerDebug module.

TargetSystem.NewInstance mySecondInstance /ARCHitecture Arm

POWER DEBUG INTERFACE / USB 3

Windows Host

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
T32Start | 41©1989-2023 Lauterbach

1. Add a new Configuration. Use a right-click to open the context menu.

2. Rename the Configuration by using the function key F2.

3. Create a Podbus Device Chain.

The Podbus Device Chain defines which LAUTERBACH devices are used for debugging.

4. Add the Power Debug USB3 to the Podbus Device Chain.

5. Assign a Core to the Power Debug USB 3.
T32Start | 42©1989-2023 Lauterbach

6. Open the Core branch to specify Arm as architecture for debugging.

Now the basic configuration is done.

7. Optionally define a start-up script under Advanced Settings > Startup Script

8. Close the complete configuration tree and start the TRACE32 instance to debug the Arm target.
T32Start | 43©1989-2023 Lauterbach

Single Core Debugging and Tracing

The following example describes how to start a TRACE32 instance to debug and trace a Cortex-R core
(Arm architecture) via a PowerDebug PRO and a PowerTrace II module.

Power supply has to be connected to POWERDEBUG PRO only. Power
(voltage) is passed on by POWERDEBUG PRO to POWERTRACE II.
The power jack at the POWERTRACE II is reserved for future use only.

POWER DEBUG PRO

POWER TRACE II

POWER DEBUG PRO
POWER TRACE II

Ethernet
Cable

Target

D
eb

ug
Co

nn
ec
to
r

Debug Cable

LA
U
TE
RB

AC
H

LA
U
TE
RB

AC
H

PR
EO

PR
O

CE
SS

O
R

AU
TO

FO
CU

S
II

C B A

CABLE

Tr
ac
e

Co
nn

ec
to
r

Preprocessor
AUTOFOCUS II

SWITCH

1 GBit Ethernet

Windows PC

TRACE32 Instance for ARM
T32Start | 44©1989-2023 Lauterbach

1. Add a new Configuration. Use a right-click to open the context menu.

2. Rename the Configuration by using the function key F2.

3. Create a Podbus Device Chain. The Podbus Device Chain defines which LAUTERBACH
devices are used for debugging.

4. Add the POWER DEBUG PRO to the Podbus Device Chain.

5. Add the POWER TRACE II to the Podbus Device Chain.
T32Start | 45©1989-2023 Lauterbach

6. Assign a Core to the Power Debug PRO. The reason for this assignment is that the TRACE32
driver software/JTAG handler runs on the Power Debug PRO module.

Because two devices are used for debugging, both of them have to be included in the Podbus
Device Chain.

7. Open the Core branch to specify Arm as architecture for debugging.

Now the basic configuration of POWER DEBUG PRO is done. No extra configurations are needed for
PowerTrace II.

8. Optionally define a start-up script under Advanced Settings > Startup Script

9. Close the complete configuration tree and start the TRACE32 instance to debug the Arm target.

´

T32Start | 46©1989-2023 Lauterbach

Multicore Debugging (heterogenous AMP)

The term Multicore Debugging is used if there are multiple cores on one chip which use a joint JTAG
interface for debugging.

To debug cores of different architectures (heterogenous AMP debugging), a separate TRACE32 instance
must be opened for each core. The following example describes how to start two TRACE32 instances

• one to debug a Cortex-R

• one to debug an Xpert Teak

On a multicore chip. Both cores are debugged via a joint JTAG interface by using a POWER DEBUG
INTERFACE / USB 3.

If you want to debug two identical cores, you can also do this with two TRACE32 instances (homogeneous
AMP).

If you have also connected a PowerTrace and both cores export trace information via a joint trace port, you
can also configure multicore debugging and tracing as described.

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

USB
Cable

Target

D
eb

ug
Co

nn
ec
to
r

Debug Cable

Windows PC

TRACE32 Instance for ARM TRACE32 Instance for Xpert Teak
T32Start | 47©1989-2023 Lauterbach

1. Add a new Configuration.

2. Rename the Configuration by using the function key F2.

3. Create a Podbus Device Chain. The Podbus Device Chain defines which LAUTERBACH devices
are used for debugging.

4. Add the Power Debug USB3 to the Podbus Device Chain.

5. Assign the first Core to the Power Debug USB 3.

6. Open the Core branch to specify Arm as architecture for debugging.
T32Start | 48©1989-2023 Lauterbach

7. Start the first TRACE32 instance

8. Start the second TRACE32 instance from the first instance using the command
TargetSystem.NewInstance

As an alternative to using the TargetSystem.NewInstance command, you can assign a second core to
the Power Debug USB 3 and set Teak/TeakLite/OAK as target option. The advantage of using the
command TargetSystem.NewInstance is that the linkage of the TRACE32 instances is automatically
set up and does not need to be configured manually in T32Start.

Linkage Between TRACE32 Instances

A linkage between the TRACE32 instances is recommended for the following purposes:

• Start/stop synchronization

The start/stop synchronization has to be prepared before the start of the TRACE32 instances by
configuring the InterCom Port for each core. This in independent of the implementation of the
start/stop synchronization.

• Communication between the TRACE32 instances

The individual TRACE32 instances can communicate via the InterCom command. This
communication has to be prepared before the start of the TRACE32 instances by configuring the
InterCom Port for each core.

The following settings are only necessary if two cores are assigned to the debug module in T32Start.

TargetSystem.NewInstance mySecondInstance /ARCHitecture TEAK
T32Start | 49©1989-2023 Lauterbach

1. Open the Advanced Settings branch for the first Core to configure the InterCom Port and set
Use Port to yes. The default Port Value is 10000.

2. Open the Advanced Settings branch for Core 2 to configure the InterCom Port and set Use
Port to yes. Since Use Auto Increment Port is set to yes the Port Value for the second core is
10001.
T32Start | 50©1989-2023 Lauterbach

Multiprocessor Debugging

The term Multiprocessor Debugging is used if there are multiple micro-controllers on the target. Each
micro-controller is debugged via its own JTAG interface.

The following example describes how to start two TRACE32 instances:

• To debug an Arm via a POWER DEBUG INTERFACE / USB3

• To debug an Xpert Teak via a second POWER DEBUG INTERFACE / USB3

The USB 3 module has a PODBUS SYNC connector. This type of module must be connected directly to the
host computer. In the example below, both PowerDebug USB 3 modules are connected to the host via USB.

Nevertheless, it makes sense to plug both modules together. This has the following advantages:

• The debug modules share a PODBUS and can trigger each other as described in “Interaction
Between Independent PODBUS Devices” in General Commands Reference Guide T, page 517
(general_ref_t.pdf).

• The debug modules have a common time base. This becomes relevant when using TRACE32
functions that assign a timestamp, for example the SNOOPer command.

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

USB
Cable

Target
D
eb

ug
Co

nn
ec
to
r

Debug Cable

Windows PC

TRACE32 Instance for ARM TRACE32 Instance for Xpert Teak

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

USB
Cable

Debug Cable

D
eb

ug
Co

nn
ec
to
r

T32Start | 51©1989-2023 Lauterbach

1. Add a new Configuration.

2. Rename the Configuration by using the function key F2.

3. Create a Podbus Device Chain.

4. Add a Power Debug USB3 to the Podbus Device Chain.

5. Assign the first Core to the Power Debug USB3.

6. Open the Core branch to specify Arm as architecture for debugging.

7. Create a second Podbus Device Chain.
T32Start | 52©1989-2023 Lauterbach

8. Add a Power Debug USB3 to the second Podbus Device Chain.

9. Assign the second Core to the second Power Debug USB3.

Open the Core branch to specify Teak as architecture for debugging.

Now the basic setup to start two TRACE32 instances to debug an Arm and an XpertTeak two
separate JTAG connectors is done.

10. Link the two TRACE32 instances via the InterCom command as described in “Linkage Between
TRACE32 Instances”, page 49.
T32Start | 53©1989-2023 Lauterbach

TRACE32 Software-only Tools

Instruction Set Simulator

The following example describes how to set up T32Start in order to start a TRACE32 Set Simulator.

A TRACE32 Instruction Set Simulator can be licensed in different ways:

1. No license is required for interactive debugging in the TRACE32 PowerView GUI, loading RAM dump
and analyzing trace data previously saved with the Trace.SAVE command.

2. The TRACE32 Instruction Set Simulator allows to perform 50 script commands/API operations
after the first "single-step" or "Go". If you want to perform further script commands/API
operations a TRACE32 Simulator License is needed.

There are two ways to obtain a simulator license:

1. You have a debug module with the appropriate license and a valid maintenance contract that you
do not need right now, then you can use this debugger as license source.

2. You have access to a license server that provides you with a suitable license.

Configuration Steps

1. Add a new Configuration. Use a right-click to open the context menu.

2. Rename the Configuration by using the function key F2.

3. Add a Simulator to the Configuration.
T32Start | 54©1989-2023 Lauterbach

4. Set up the target architecture.

5. If you have a floating license for the Simulator, configure the RLM settings of the license under
Advanced Settings > License by setting the RLM Port and Server.

If you have a hardware-based TRACE32 debugger, you can also use it to license the TRACE32
Instruction Set Simulator. Do in this case a right-mouse click on ...PodBusDevice then select
Browse.

Select then the Pod Bus Device and click Select Source Node.
T32Start | 55©1989-2023 Lauterbach

6. Optionally define a start-up script under Advanced Settings > Startup Script

7. Close the complete configuration tree and start the TRACE32 instance.
T32Start | 56©1989-2023 Lauterbach

Command Line Arguments

The Syntax of the command line parameters of T32Start is:

T32Start.exe [-QUIT] [[-RUNCFGFILE] <config_file>] [-RUNITEM <id>]

Command Line Option Description

-QUIT Closes T32Start after any action given by the other options.

-RUNCFGFILE
<config_file>

Start the configuration saved in the file <config_file>. Make sure,
that <config_file> was derived from a tree item of the type
configuration.

<config_file> Adds the configuration saved in the file <config_file> to the
Configuration Tree. Make sure, that <config_file> was derived
from a tree item of the configuration type. There are two scenarios
to use this parameter. Both can get active when t32start is started
by the registred .ts2 file extension by the Windows Explorer.

• The information in the file is appended to the current
Configuration Tree when the config file contains a
Configuration.

• The <config_file> is used temporarly as current
Configuration Tree when the config file contains a
complete backup.

-RUNITEM <id> Starts a configuration or other startable items, that are already part
of the configuration tree. The parameter <id> is the absolute
logical path to the tree item e.g. //Configuration1. This is the
recommended way to start configurations remotely.
T32Start | 57©1989-2023 Lauterbach

Error Messages

Problem / Error Message Solution

Directory not found / File
not found

The consistency between the TRACE32 installation and the
Advanced Settings/Paths is lost. Check your installation and the
Path settings.

Loaded file is not of type
"Configuration"

The command line parameter <config_file> points to a file that was
not saved from a tree item of type Configuration.

Invalid ID path The command line parameter <id> was not found or references to
an item that is not startable. Copy the right ID of a startable item
with the context menu at the status line.

Could not write to file The Configuration tree could not be saved to the file. Specify a
writable file under Settings/Global Settings/Saving Location/File.

string reference contains
itself

File paths or directory path can refer to other tree items in order to
take their value. Circular references are not allowed. Correct the
references.

Cannot find configuration
path

A reference could not be resolved. Correct the references.

Cannot find env variable The environment variable could not be found. Create an
environment variable with that name and restart T32Start or
correct the references.

Cannot find executable Probably the wrong Target is selected in a TRACE32 instance item
(Core, Simulator, …). The executable for that target type is not
installed.

No T32 PowerView GUI
appears when Start is
pressed without any error
message

Add TRACE32 instance tree items to the sub tree of the startable
item.
T32Start | 58©1989-2023 Lauterbach

	T32Start
	History
	Introduction
	Features

	Quick Start
	T32Start User Interface
	Buttons
	Context Sensitive Menu
	Mouse Actions

	Configuration Tree: Settings
	Global Settings
	Default Advanced Settings
	Paths
	License
	Interfaces
	Display Settings
	Startup Script

	Configuration Container and Configuration
	Podbus Device Chain
	Connection Type
	Target Option

	MicroTrace
	Software-only Debugging (Host MCI)
	Debug Environment for Setup 1 (Single Instance)
	Debug Environment for Setup 2 (Integrated Server)
	Debug Environment for Setup 3 (Dedicated Server)

	References to Tree Items
	Configuration Examples
	Hardware-based TRACE32 Tools
	Single Core Debugging and Tracing (MicroTrace)
	Multicore Debugging and Tracing (MicroTrace)
	Single Core Debugging (USB 3)
	Single Core Debugging and Tracing
	Multicore Debugging (heterogenous AMP)
	Multiprocessor Debugging

	TRACE32 Software-only Tools
	Instruction Set Simulator

	Command Line Arguments
	Error Messages

